
UCRL-WEB-201535

LCRM (DPCS) Reference Manual

LCRM (DPCS) Reference Manual - 1

Table of Contents

Preface 4
Introduction 5
Background 7
LCRM Architecture 9

Resource Allocation and Control System (RAC) 10
RACCOM (RAC Communications Daemon) 11
ACC (Defunct) 12
BAC (Report Bank Names and Privileges) 12
BT (Defunct) 13
RA (Defunct) 13
NEWACCT (Defunct) 13
DEFACCT (Defunct) 13
RACMGR (RAC Manager Daemon) 14

Production Workload Scheduler (PWS) 15
The PWS Daemons (PWSD, PLSD, BCD) 15
The PWS User Utilities 17

LCRM Operating Features 19
Status Values for Batch Jobs 19

Interpreting Status Values 19
Alphabetical List of Status Values 20

Class Values for Batch Jobs 26
Run Properties of Batch Jobs 27
Resource Partition Limits 31
Environment Variables for Batch Jobs 33
Comment and Shell Handling 37
Job Scheduling 39

Order of Checking Precluding Conditions 39
Algorithm for Job Scheduling 41

Output Truncation 45
Reporting Memory and Time Used 46
Reviewing Log Files for Done Jobs 47
DFS and DCE Interactions with Batch 48
Managing Nonshareable Resources 48
Expediting and Exempting Jobs 49

Expediting Jobs 50
Exempting Jobs 51
Forcing Job Priorities 52
Granting Special-Job Permissions 53

PHSTAT (Production Host Status) 55
Fair Share Scheduling Algorithms 56

Definitions 56
Shares 56
Active Users 57

LCRM (DPCS) Reference Manual - 2

Shares and their Normalization 58
Usage and Its Decay 60
Priority Calculation 62
Role of Priority in Job Scheduling 65

Graceful Priority-Service Transition 66
Warning Alternatives 66
Library Calls 68

PCSGETRESOURCE (LRMGETRESOURCE) 68
PCSSIG_REGISTER (LRMSIG_REGISTER) 70
PCSWARN (LRMWARN) 71
Error Conditions (*pcsstatus) 72

Examples 73
Poll-for-Warning Examples 73
Signal-Catching Examples 78
Administrative Examples 83

Checkpointing 84
Checkpointing Overview 84
Condor Automatic Checkpoint 84
Program-Generated Checkpoint 85
An LCRM Resubmitting Script 89
Checkpointing with SLURM and POE 93

Disclaimer 95
Keyword Index 96
Alphabetical List of Keywords 98
Date and Revisions 100

LCRM (DPCS) Reference Manual - 3

Preface

Scope: The LCRM (DPCS) Reference Manual explains in detail the role, architecture,
components, operating features and behavior, and typical applications of the Livermore
Computing Resource Management (LCRM) system (from 1991 through 2003 known
as the Distributed Production Control System or DPCS, and often loosely called the
"batch system"). The software that LCRM uses to manage batch jobs (both user
utilities and hidden daemons) and the effect of LCRM management on those jobs are
described at length. One chapter explains the concepts, terms, and formulas that
comprise "fair-share scheduling" as implemented on LC machines. Other chapters
tell how to use the Condor libraries to support voluntary checkpointing, and how to
gracefully handle unexpected batch job terminations.

Readers interested in step-by-step instructions for planning and making a batch script
and then running it should instead consult the EZJOBCONTROL (URL:
http://www.llnl.gov/LCdocs/ezjob) guide. General usage-reporting and limit-reporting
tools are covered and illustrated in the Bank and Allocation Manual (URL:
http://www.llnl.gov/LCdocs/banks). Specific details about gang scheduling of parallel
jobs appear in the Gang Scheduler User Guide (URL:
http://www.llnl.gov/LCdocs/gang). The locally developed low-level job manager on
LC Linux (CHAOS) clusters is described in the SLURM Reference Manual (URL:
http://www.llnl.gov/LCdocs/slurm). Corresponding information about Moab, the
commercial product with which LC began replacing LCRM in 2007, appears in Moab
at LC (URL: http://www.llnl.gov/LCdocs/moab).

Availability: When the programs described here are limited by machine, those limits are included
in their explanation. Otherwise, they run under any LC UNIX system.

Consultant: For help contact the LC customer service and support hotline at 925-422-4531 (open
e-mail: lc-hotline@llnl.gov, SCF e-mail: lc-hotline@pop.llnl.gov).

Printing: The print file for this document can be found at

 OCF: http://www.llnl.gov/LCdocs/dpcs/dpcs.pdf
 SCF: http://www.llnl.gov/LCdocs/dpcs/dpcs_scf.pdf

LCRM (DPCS) Reference Manual - 4

http://www.llnl.gov/LCdocs/ezjob
http://www.llnl.gov/LCdocs/banks
http://www.llnl.gov/LCdocs/gang
http://www.llnl.gov/LCdocs/slurm
http://www.llnl.gov/LCdocs/moab
http://www.llnl.gov/LCdocs/moab
http://www.llnl.gov/LCdocs/dpcs/dpcs.pdf

Introduction
The Livermore Computing Resource Management (LCRM) system (formerly called DPCS, the

Distributed Production Control System) allocates resources for the UNIX-based production computer
systems at Lawrence Livermore National Laboratory (LLNL). Through a complex hierarchy of
computer-share bank accounts, job limits on banks and users, time-usage monitoring tools, and run-control
mechanisms, LCRM lets organizations control who uses their computing resources and how rapidly those
resources are used. It also manages an underlying batch system that actually runs production jobs guided
by LCRM policies.

Thus LCRM both delivers computing resources to LLNL's scientists and provides for accurate accounting
of resource use to government oversight agencies. Its uniform interface lets all production machines be
managed as one, which reduces operating costs. And organizations control their own budgeted allocations
(e.g., the way compute shares divide among users), which reduces the active involvement of the computer
center.

Scope.
This reference manual for LCRM describes the many software daemons and user utilities that comprise
the system and shows how they are related. Relevant status messages, environment variables, and other
operating features are explained as well. Pitfalls or unexpected side effects of LCRM features or algorithms
are noted and explained throughout the text, as well as how to handle unexpected changes in job status.

This is not a basic user guide to batch processing. For such a step-by-step primer of usage information
please see EZJOBCONTROL (URL: http://www.llnl.gov/LCdocs/ezjob). For reference information on
how to monitor computer time and its use (or job limits and their commitment so far), see the Bank and
Allocation Manual (URL: http://www.llnl.gov/LCdocs/banks) (the Bank Manual also contains explicit
instructions for allocating time for those few LC users authorized to manage resource banks). For an
inclusive, comparative analysis of how environment variables generally influence LCRM-managed jobs,
see the "Batch-Job Environment Variables" section (URL:
http://www.llnl.gov/LCdocs/ev/index.jsp?show=s3.4) of LC's Environment Variables user guide.

Replacement by Moab.
Starting in March, 2007, LC began gradually replacing LCRM on its production machines with a commercial
product from Cluster Resources, Inc., called "Moab Workload Manager" (MWM) or simply Moab. LC
has configured Moab to emulate many (but not all) of the LCRM tools and services that it replaces. For
imformation on where Moab runs at LLNL and how it behaves (especially relative to familiar LCRM
features), see the localized Moab at LC (URL: http://www.llnl.gov/LCdocs/moab) user manual.

Names.
Starting in 2003, the former DPCS changed its official name to the current "Livermore Computing Resource
Management" (LCRM) system. This means that internal names, structures, files, and libraries have changed
from "pcs" to "lrm" (example: the API library LIBPCS.A became LIBLRM.A). But user messages still
sometimes mention DPCS and user tools retain their original names (exception: former utility PCSMGR
can now only be executed as LRMMGR, and its interactive prompt has become lrmmgr> instead of the
former pcsmgr>). Also starting in 2003, LC began deploying a locally designed, low-level resource manager
to work "below" LCRM/DPCS (from a user's viewpoint) to more efficiently handle nodes and tasks for

LCRM (DPCS) Reference Manual - 5

http://www.llnl.gov/LCdocs/ezjob
http://www.llnl.gov/LCdocs/banks
http://www.llnl.gov/LCdocs/banks
http://www.llnl.gov/LCdocs/ev/index.jsp?show=s3.4
http://www.llnl.gov/LCdocs/moab

large parallel jobs. See the SLURM Reference Manual (URL: http://www.llnl.gov/LCdocs/slurm) for
details on what this low-level system contributes to job control on LC's Linux (CHAOS) machines.

Access to LCRM Utilities.
Several sections of the EZJOBCONTROL (URL: http://www.llnl.gov/LCdocs/ezjob) guide introduce and
explain the user utility programs (PSUB, PSTAT, PALTER, and others) by which you interact with LC's
batch system (to submit and track your jobs). For efficiency, LC now makes these LCRM software tools
available only on:
(1) the few nodes of each cluster designated as interactive login nodes, and
(2) the single node on which any single-node job executes, and
(3) the master node (but not the other nodes) on which a multiple-node job executes.

Access to Job Nodes.
Besides a few designated login nodes on every LC cluster, users running a batch job are also allowed to
log in to any node on which that job executes (but the LCRM utilities may not be available there, as noted
above). Such access to job nodes is only allowed (on SLURM-managed machines) after the job's first
execution of POE or MPIRUN (which sometimes causes a noticeable delay in login access).

LCRM (DPCS) Reference Manual - 6

http://www.llnl.gov/LCdocs/slurm
http://www.llnl.gov/LCdocs/ezjob

Background
In 1990, Livermore Computing (LC) committed to convert its production platforms to UNIX-based

systems. This was a radical change because we had developed and come to rely on elaborate accounting
and resource management facilities in our earlier, proprietary systems.

The LCRM project, begun in 1991 under the name "Distributed Production Control System" or DPCS
and in operation since October, 1992, adapts production demand to offer an efficiently manageable workload
to the kernel memory and CPU schedulers by monitoring memory load, swap device load, and idle time.
The LCRM system is not a CPU scheduler or a low-level batch system (it relies on other underlying or
"native" batch systems, such as TBS, LoadLeveler, or LC's own SLURM (URL:
http://www.llnl.gov/LCdocs/slurm)). Nor does it do process-level, process-termination accounting. This
diagram shows the basic approach used (but now Oracle has replaced Sybase for accounting and LC's
Trivial Batch System TBS has replaced the Network Queueing System NQS):

LCRM features include:

• Basic data collection and reporting mechanisms for project-level, near-real time accounting.

• Resource allocation to customers according to customers' organizational budget.

• Automated, highly flexible system with feedback for proactive delivery of resources.

• Flexible prioritization of production, including "run on demand."

• Dynamic reconfiguration and retuning.

LCRM (DPCS) Reference Manual - 7

http://www.llnl.gov/LCdocs/slurm

• Graceful degradation in service to prevent overuse of the machine where not authorized.

• Proactive delivery of service to organizations that are behind in their consumption of resources to
the extent possible via the underlying batch system.

In the mid 1990s, the LC staff extended LCRM to support massively parallel processing (MPP)
architecture. With this upgrade, LCRM is able to schedule production jobs that span a large number of
tightly coupled homogeneous processing elements.

LCRM has also been extended to support clustered machines. To schedule a job on a clustered machine,
a user only needs to specify the cluster name (or a computing feature that only resides on the cluster) rather
than any particular node in the cluster.

LC has also extended LCRM to allow cross-host submission of production jobs to any of several
heterogeneous platforms from any platform. Support has been added so that allocations and production
scheduling is managed from a single platform for all hosts. Further, the entire LCRM system can be managed
from any host rather than each host being managed locally.

LCRM manages jobs on Solaris, AIX, Digital UNIX (Compaq's TRU64), and Linux/CHAOS. The
LCRM "central managers" use IBM high-availability machines, computers with redundant processors and
disks with automatic fault recovery, for maximum reliability.

Starting in 2003, the former DPCS changed its official name to the "Livermore Computing Resource
Management" (LCRM) system. Many system messages continue to refer to DPCS, however, and most
system user utilities retain their original names. The exception is the former PCSMGR utility, which you
must now execute as LRMMGR (and which now offers an lrmmgr> prompt instead of a pcsmgr> prompt).
The API library LIBPCS.A has become LIBLRM.A as well. (It is standard policy for LC to support the
current API library and one previous version, but to drop support for versions farther back than that.)

The maximum length of a LCRM job name is 15 characters, but user names may be as long as 31
characters.

Starting in spring, 2005, LCRM passes each submitted job's metafile from the submitting host to its
own control host at the time of submittal. This eliminates delays or scheduling problems later if the
submitting host happens to be down when the opportunity to schedule the job arises.

LCRM (DPCS) Reference Manual - 8

LCRM Architecture
LCRM consists of two major parts, shown in the lower center of the figure below. The Resource

Allocation and Control (RAC) subsystem allocates resources to organizations and controls access to those
resources. The Production Workload Scheduler (PWS) schedules production computing jobs (batch jobs)
on machines to efficiently deliver resources as desired.

LCRM (DPCS) Reference Manual - 9

Resource Allocation and Control System (RAC)
The RAC system manages job behavior through:

• Recharge accounts (charge account number; not the same as "login" account or user).

• Banks (allocation pools or group).

• User allocations within the banks.

As resources are consumed on a machine, the RAC system associates them with the user and the
appropriate bank. As the job runs the user's bank is debited. Under fair-share scheduling, users and banks
are allocated shares that control the rate at which they consume computing resources rather than the total
amount of resources they consume. Nevertheless, time accounting as managed by the RAC system continues
to reveal important time-used trends retrospectively.

Historically, at LC an "account" was essentially a credit that represented an amount of usable resources
(which may be unlimited). Some users, called account coordinators, were permitted to manage the account
by granting and denying other users access to it. Accounts were used primarily to determine budgetary
charges for organizations and to provide users with a "one stop" limit on resource accessibility. Starting
in August, 2005, however, LC accounts were eliminated as batch-job attributes, and all account-management
tools became obsolete. See the Bank and Allocation Manual (URL: http://www.llnl.gov/LCdocs/banks)
for the current comparative role of usage records, banks, and allocations.

Banks manage the rate of delivery of allocated resources, and prioritize and manage production on
each machine. A bank represents a resource pool (not of time, but of nondecremented shares) available to
sub-banks and to users who have access permission. Banks exist in a hierarchical structure: one "root"
bank "owns" all the resources on a machine, which are apportioned to its sub-banks. There is no limit to
the depth of the hierarchy. Some users, called bank coordinators, may create and destroy sub-banks and
grant and deny other users access to a bank. The authority of coordinators extends from the highest level
bank at which they are named coordinator throughout that bank's subtree. Users access part or all of a
bank's resources through one or more user allocations (sometimes constrained by per-bank or per-user job
limits (page 31)). Starting in February, 2006, LCRM makes no distinction between "batch banks" and
"interactive banks." All banks can support either batch or interactive sessions.

The following subsections explain the software components of the RAC system, which include both
daemons and user utilities.

LCRM (DPCS) Reference Manual - 10

http://www.llnl.gov/LCdocs/banks

RACCOM (RAC Communications Daemon)

The RAC system communications daemon (RACCOM) reads messages from RAC clients (any of six
user utilities related to accounting), forwards the messages to RACMGR (page 14), reads the reply from
RACMGR, and forwards it back to the client.

In addition, RACCOM is the parent process for the daemons RACMGR, RACRPT, and PWSD (page
15) (having been started up as a result of an exec by pcsstart). As such, it monitors the health of these
processes. It logs shutdowns and critical failures and shuts down the PCS in case of critical error.

There are six "native" RACCOM client utilities (most now defunct), each of which has its own section
including user instructions and typical usage examples below. NOTE: for many kinds of time-used reports
it is more appropriate to run the LRMUSAGE utility (formerly called PCSUSAGE and described and
illustrated in the Bank and Allocation Manual (URL: http://www.llnl.gov/LCdocs/banks)). The RACCOM
clients are:

ACC (defunct) reported currently available account numbers.

BAC reports your bank name and whether you can use
 exempted, expedited, or forced-priority runs.

BT (defunct) reported your allocated, used, and available
 bank time. See its section for replacements.

RA (defunct) reported your allocations by shift (day, night,
 weekend). See its section for replacements.

NEWACCT (defunct) changed the current account that your
 usage draws against.

DEFACCT (defunct) changed the default account that your
 usage draws against.

LCRM (DPCS) Reference Manual - 11

http://www.llnl.gov/LCdocs/banks

ACC (Defunct)

The ACC command formerly displayed LCRM acount permissions and account numbers. For
retrospective time-used reporting, you should now run LRMUSAGE (URL:
http://www.llnl.gov/LCdocs/banks) instead.

BAC (Report Bank Names and Privileges)

The BAC command is used to display access information from the RAC database. BAC reports were
modified (fall, 2003) to display full bank names and user names up to 31 characters. Typical examples of
BAC usage include:

 bac report the access status of the calling user to his/her current
 bank

 bac -u joan,steve,mary
 report the access status of users steve, joan and mary to all
 their banks

 bac -b sab,fll
 report the access status of the banks sab and fll.

 bac -t fll -l 3
 report the access status of all child nodes of fll down three
 generation levels.

 bac -l 3 -T root
 report the access status of the top three levels of the rdb but
 report only banks. Do not report user allocations.

 bac -t root -0
 report the access status of all banks and user allocations from
 which some time has been used.

 bac -T root -0
 report the access status of all banks from which some time has
 been used. Do not report user allocations.

 bac -r sab
 report the access status of bank sab and all of its parents up
 through the root bank.

 bac -u joan -b sab
 approximately the same as: bac -b sab; bac -u joan

LCRM (DPCS) Reference Manual - 12

http://www.llnl.gov/LCdocs/banks

BT (Defunct)

The BT ("bank times") command formerly displayed resource allocation and usage information from
the Resource Allocation and Control database for the current shift within the LCRM system. Allocations
are now shown by using PSHARE (see the Priority (page 62) section below, or see the EZJOBCONTROL
(URL: http://www.llnl.gov/LCdocs/ezjob) guide). Retrospective time usage is now reported by running
LRMUSAGE (formerly called PCSUSAGE, as described in the Bank and Allocation Manual (URL:
http://www.llnl.gov/LCdocs/banks)).

RA (Defunct)

The RA command formerly displayed resource allocation information by shift (day, night, weekend)
from the Resource Allocation and Control database. Shifts are no longer used for (share) allocations or
time reporting.

You can now report actual time used by whole day (0:00 to 24:00 only) by running the LRMUSAGE
tool, as described and illustrated in the Bank and Allocation Manual (URL:
http://www.llnl.gov/LCdocs/banks).

NEWACCT (Defunct)

The NEWACCT command formerly changed or set a user's current. In August, 2005, LCRM eliminated
accounts as a batch-job attribute.

DEFACCT (Defunct)

The DEFACCT utility formerly changed or set a user's default account. In August, 2005, LCRM
eliminated accounts as a batch-job attribute.

LCRM (DPCS) Reference Manual - 13

http://www.llnl.gov/LCdocs/ezjob
http://www.llnl.gov/LCdocs/banks
http://www.llnl.gov/LCdocs/banks

RACMGR (RAC Manager Daemon)

RACMGR runs on the control host. RACMGR is the principle daemon in the RAC subsystem. It
monitors resource usage by sessions within the system, suspends or kills sessions as needed, and reports
the resource utilization to the accounting system.

RACMGR is a sibling of RACRPT, RACCOM, and PWSD (all are control-host daemons). When
RACMGR begins executing, its pipes to other processes have been set up already by its parent process
pcsstart (which becomes RACCOM). RACMGR accomplishes its goals on each LCRM production machine
by means of three other daemons, each of which runs on each production machine and reports to RACMGR
on the control host machine:

RACCTD makes a TCP/IP connection to both the ACCTD and the RACMGR daemons. It passes
messages between these two daemons. The purpose of RACCTD is to provide a
machine-independent interface between the ACCTD (which only knows the machine
it is on) and the RACMGR (which knows little about the machine the ACCTD is on).

ACCTD is a machine-dependent accounting daemon. Each production host may have different
facilities for collecting the desired accounting information, so each production host
must provide an accounting daemon to mediate between the local machine and the
LCRM system. ACCTD collects information from the local system, and passes the
data on to RACCTD. RACCTD reformats the information into the form expected by
the RAC system, and passes the data to RACMGR.

RACSLV is the resource allocation slave daemon. An instance of RACSLV runs on each
production host. RACSLV performs auxiliary tasks for the RACMGR. The RACMGR
may be controlling allocations on a remote machine, so RACSLV does actual control
functions on each controlled machine.

In addition to these three production-machine daemons, RACMGR interacts with another helper daemon
that runs on the control machine:

RACRPT is the LCRM accounting report daemon. RACRPT receives records from RACMGR,
reformats them, and sends them on to an accounting system or a file. When RACRPT
begins executing, it has one input pipe open from RACMGR. Session resource usage
records arrive over this pipe. RACRPT sends these records to an accounting system,
if installed, or simply to a binary file if not.

LCRM (DPCS) Reference Manual - 14

Production Workload Scheduler (PWS)
Users submit batch requests directly to the PWS for secondary submittal to the batch system, specifying

(or defaulting to) the bank and account to be charged. One important function of the PWS is to keep the
machine busy without overloading it. PWS does not schedule interactive work, but it does track the resulting
resource load and adjust the amount of production to "load level" the machine accordingly.

The set of production requests managed by the PWS is called the production workload. Requests (jobs)
in this workload are prioritized according to rules and allocations laid out by system administrators and
coordinators. High priority requests are permitted to run if the machine is not overloaded.

The PWS offers users a utility to submit batch jobs (PSUB) and 6 other utilities to manipulate the
scheduling of those jobs. Several other software daemons interact with the utilities to manage the jobs
submitted. An earlier figure (page 9) shows how these daemons and utilities are interrelated, while the
following subsections describe them in greater detail.

The node in a multinode system where the LCRM daemons run (formerly called many things, including
CWS and PRODHOST) is now called the "LCRM gateway node." On IBM SPs, the gateway node no
longer needs to be the control workstation (CWS). LRMMGR assigns this gateway node.

When LCRM enters "installing mode" (for system updates), communication with LCRM daemons is
disabled. Users receive a message that an installation is underway and that they should retry user utilities
later.

The PWS Daemons (PWSD, PLSD, BCD)

The LCRM Production Workload Scheduler involves three software daemons (whose current status
for each LCRM-managed host is revealed by using the PHSTAT (page 55) utility):

PWSD is the Production Workload Scheduler Daemon. PWSD is the daemon that manages
production for the LCRM. It is started by pcsstart and is a sibling process with other
LCRM control daemons (running on the control host). It has unnamed pipes established
between itself and RACMGR when it starts execution. This daemon now supports
unlimited process table size, up to 300 hosts within a single LCRM domain, and
public/private RSA key authentication for security. When PWSD detects anomalous
conditions it continues running rather than exiting. This allows the last successful
write to the LCRM database to remain on disk undamaged, while any corrupt new
data in memory is not written to disk (a database protection feature).

PLSD is the PWS Load Statistics Deamon. PLSD reports load statistics on an AIX or Linux
machine. It is started by pcsstart and is an independent daemon that runs on each
LCRM production machine.

LCRM (DPCS) Reference Manual - 15

BCD is the Batch Control Daemon. BCD is the daemon that manages the actual (underlying)
batch system on each PCS-controlled (production) host. This isolates PWS functions
from the particulars of any one batch system, allowing other parts of the PCS to control
batch systems generically.

BCD executes as a server at a well-known, privileged port. The user of BCD must
be a privileged client. The client contacts BCD using tcp/ip calls. It then sends an
ascii string of tokens that represents the function desired to be executed. (See
bcd_msg2a().) BCD parses this string (see a2bcd_msg()) and performs the function
requested. It then returns an ascii string to the caller that represents the result of
performing the function. BCD "hangs up" on the client after performing each function.
BCD may get a request while it is processing another request. In this case, the new
request is queued until the requests ahead of it are completed. Queued requests are
processed FIFO. There is an API that should be used to perform BCD functions
because it implements (and hides) the communication protocol for the user. It is
libbcd.a. This API is not available to normal user processes.

BCD implements the following functions:

bcd_submit: Registers a batch job with a bcd.

bcd_move: Causes a batch job to be moved from its host of
 submission to the host on which it will run.

bcd_run: Causes the bcd to request its batch system to run
 the job.

bcd_hold: If the job is running and the batch system does not
 support checkpointing, the response to this request
 is an error status. Otherwise, if the job is
 running it is checkpointed. Otherwise, this function
 does nothing.

bcd_kill: Notifies that a job is to be removed regardless of
 status. If the job is running, it is killed. If
 this host is the job's current home and it is not
 running, it is deleted from the batch system too.

bcd_stat: Returns to the caller the state of all jobs known
 to LCRM.

LCRM (DPCS) Reference Manual - 16

The PWS User Utilities

Users interact with LCRM-managed batch systems by running any of seven utilities that submit jobs
or manipulate submitted jobs. The list below reveals the names of these utilities and the basic role of each;
for practical advice on how to use them consult the comparisons and examples in the EZJOBCONTROL
(URL: http://www.llnl.gov/LCdocs/ezjob) guide. Someday perhaps a detailed analysis of the options for
each utility will appear here (see also PHSTAT (page 55)).

In 2007 LC began replacing LCRM with a commercial workload manager called Moab. On the
production machines where Moab manages batch jobs instead of LCRM, Moab has been configured to
emulate some (but not all) LCRM utilities and their options. The utilities that Moab attempts to emulate
are marked below; the others you must replace with native Moab tools. See the "Tool Comparison" section
(URL: http://www.llnl.gov/LCdocs/moab/index.jsp?show=s2.1) of the Moab at LC user guide for more
details and conversion advice.

PSUB (emulated by Moab) submits your specified script to the batch system to run, with
the time, memory, and other constraints that you indicate using PSUB options. For
usage advice, traps, and examples, see the relevant section (URL:
http://www.llnl.gov/LCdocs/ezjob/index.jsp?show=s6.5) of EZJOBCONTROL.
Authorized users can also expedite jobs, exempt jobs, and force job priorities by using
privileged features of PSUB (see below (page 49)).

PALTER (emulated by Moab) changes specified features of your already submitted batch job(s).
Not all features can be altered. For usage advice, traps, and examples, see the relevant
section (URL: http://www.llnl.gov/LCdocs/ezjob/index.jsp?show=s6.7) of
EZJOBCONTROL. Authorized users can also expedite jobs, exempt jobs, and force
job priorities by using privileged features of PALTER (see below (page 49)).

PEXP allows authorized users to "expedite" a batch job so that it competes favorably against
jobs funded from other PCS banks. Expanded PSUB and PALTER features have
made the use of PEXP obsolete (see below (page 50)), although it persists for historical
continuity. For usage advice, traps, and examples, see the relevant section (URL:
http://www.llnl.gov/LCdocs/ezjob/index.jsp?show=s6.5) of EZJOBCONTROL.

PHOLD (emulated by Moab) makes a specified, submitted batch job ineligible to run until
you release it with PREL. PALTER (page 52) can now achieve the same effect in
another way. For usage advice, traps, and examples, see the relevant section (URL:
http://www.llnl.gov/LCdocs/ezjob/index.jsp?show=s6.7) of EZJOBCONTROL.

PLIM reports nine seldom-changed system default limits that your batch job faces on the
machine where you run PLIM (such as maximum allowed run time and node-hour
limits). For usage advice, traps, and examples, see the relevant section (URL:
http://www.llnl.gov/LCdocs/ezjob/index.jsp?show=s6.4.1) of EZJOBCONTROL.
For a system-specific configuration summary on each production machine, also consult
the text file called /usr/local/docs/job.limits (where details vary by host).

LCRM (DPCS) Reference Manual - 17

http://www.llnl.gov/LCdocs/ezjob
http://www.llnl.gov/LCdocs/moab/index.jsp?show=s2.1
http://www.llnl.gov/LCdocs/ezjob/index.jsp?show=s6.5
http://www.llnl.gov/LCdocs/ezjob/index.jsp?show=s6.7
http://www.llnl.gov/LCdocs/ezjob/index.jsp?show=s6.7
http://www.llnl.gov/LCdocs/ezjob/index.jsp?show=s6.5
http://www.llnl.gov/LCdocs/ezjob/index.jsp?show=s6.7
http://www.llnl.gov/LCdocs/ezjob/index.jsp?show=s6.4.1

PREL (emulated by Moab) releases a specified batch job to compete to run normally, after
you have previously used PHOLD to hold it. For usage advice, traps, and examples,
see the relevant section (URL: http://www.llnl.gov/LCdocs/ezjob/index.jsp?show=s6.7)
of EZJOBCONTROL.

PRM (emulated by Moab) removes from the batch system a specified job that you had
previously sumbitted, including jobs that have started to run. For usage advice, traps,
and examples, see the relevant section (URL:
http://www.llnl.gov/LCdocs/ezjob/index.jsp?show=s6.8) of EZJOBCONTROL.

LCRM (DPCS) Reference Manual - 18

http://www.llnl.gov/LCdocs/ezjob/index.jsp?show=s6.7
http://www.llnl.gov/LCdocs/ezjob/index.jsp?show=s6.8

LCRM Operating Features
This section discusses some of the inner machinery and hidden algorithms of LCRM, and tries to

explain how they cause the reports, states, and overt behavior that job-running users may encounter.

Status Values for Batch Jobs

Interpreting Status Values

PSTAT's Role.
You can discover your batch job's unique LCRM identifier (its JID), monitor the job's status, and remind
yourself of its (alterable) attributes by running the PSTAT utility. For PSTAT usage advice, traps, and
examples, see the relevant section (URL: http://www.llnl.gov/LCdocs/ezjob/index.jsp?show=s6.6) of the
EZJOBCONTROL guide.

Every 20 seconds LCRM evaluates submitted jobs to determine which, if any, should be scheduled.
Nonscheduled jobs are assigned one of many possible states, supposed to reveal to users why the job is
not running. Other states indicate that a job is running, or has stopped for some reason after starting to run.
(In PSTAT output, an asterisk (*) precedes every job state for a job that has not yet run.)

Interpretation WARNINGS.
The order in which LCRM checks state conditions for scheduling appears in the job-scheduling section
(page 39) below. The explanation of each state that LCRM can assign and PSTAT can report appears in
the alphabetical list in the next subsection. Some of these status values (e.g., ELIG) can be ambiguous or
misleading without careful interpretation.

Implicit in many LCRM status-value explanations is the concept that if a job could run on any of several
machines, it has a (perhaps DIFFERENT) status associated with each separate machine. When you submit
a batch job using PSUB, LCRM builds a list of permitted hosts for it. Your PSUB "constraints" (specified
with the -c option) can overtly restrict this host list. But in general, every active LCRM-controlled machine
(every production IBM machine or Linux/CHAOS cluster) goes into a job's permitted-host list.

If you query "the status" of a job with PSTAT before the job starts to run on some specific machine,
the result may be ambiguous. Formerly by default PSTAT reported a job status for whatever host happened
to be FIRST in the job's permitted-host list. However, depending on how each machine is configured, this
default first-host status might not apply to other machines: a job could exceed your jobs-per-user quota
(QTOTLIMU) on the first host, be TOOLONG to run on the second host, yet be ELIG or WMEM on the
third, etc. Only by explicitly polling your job's status on each separate machine where it could run, using
PSTAT's -m hostname option, for example,

pstat -m up -u yourname
could get you an unambiguous report on why it had not started to run on each candidate host.

Now, however, by default PSTAT reports MULTIPLE as your job's status if it could run on any of
several clustered machines with perhaps a different status on each. You can either still use -m hostname
as above to disambiguate these incomplete status reports, or you can use PSTAT's -M (uppercase em)
option, as shown here:

LCRM (DPCS) Reference Manual - 19

http://www.llnl.gov/LCdocs/ezjob/index.jsp?show=s6.6

pstat -M -n 1234
-M reports a separate line with a separate status for each possible target machine where your job (specified
by job-id with -n) could run. You cannot use both -M and -m on the same PSTAT execute line.

Moab-Scheduled Machines.
On LC clusters scheduled by Moab rather than LCRM, many former job states involving time, bank, or
other resource limits are no longer enforced (and hence PSTAT run on those machines will never report
them). Those states are marked below. For the (much shorter) list of native Moab job states or the mapping
of LCRM states into Moab states, see the "Job Status Comparison" section (URL:
http://www.llnl.gov/LCdocs/moab/index.jsp?show=s2.4) of the Moab at LC user guide.

Alphabetical List of Status Values

(In PSTAT output, an asterisk (*) precedes every job state for a job that has not yet run.)

ACCOVER The account being charged by this job has a quota and that quota has been exceeded.
Not used on Moab-scheduled machines.

BAT_WAIT The job has been scheduled to run by LCRM but the underlying ("native") batch
system on the production machine (TBS or LoadLeveler) has confirmed that the batch
system itself is waiting for some resource before starting the job.

CMPLETED (Shows only if you use PSTAT's open-side -T option to report on done jobs.) The job
has finished running on its own (without being externally stopped), though not
necessarily with success.

CPU&TIME The product of CPUs requested and time requested for this job exceeds the maximum
allowed on the target machine. [Exemptable. (page 51)]

CPUS>MAX The job requires more dedicated CPUs (not nodes) on a machine than the machine's
administrator will permit (per job) at the time of the status report. If the maximum
allowed CPUs per job is later increased, the job will be reevaluated for scheduling.
[Exemptable. (page 51)] See also NODE>MAX.

DEFERRED LoadLeveler (on an IBM SP machine) has erroneously reported that no job classes
exist, so this job has moved into DEFERRED state to wait 10 minutes to let the
scheduler try again to get an appropriate LoadLeveler response and run the job (the
retry delay is administratively configurable).

DELAYED The job exceeds the current maximum number of allowed jobs (page 39) per user
that LCRM will actively consider for scheduling, but it falls below the maximum
number of allowed delayed jobs. As other jobs are scheduled, delayed jobs
automatically move (first in, first out) into active consideration. Attempts to submit
more jobs than the allowed maximum number of delayed jobs are rejected outright.
Use PSTAT's -D option to list current DELAYED jobs. Not used on Moab-scheduled
machines.

DEPEND The job is awaiting completion of another specific job on which it depends.
LCRM (DPCS) Reference Manual - 20

http://www.llnl.gov/LCdocs/moab/index.jsp?show=s2.4

ELIG The job is eligible to run. Currently, being "eligible" is a four-way ambiguous
condition, since newly submitted jobs are assigned the ELIG state if
(1) no hard condition would prevent them from running (such as overt dependency
on another, unfinished job), or
(2) they have been evaluated to run but another job is already scheduled to run, or
(3) scheduling evaluation reveals another job with a higher priority that itself cannot
be scheduled to run yet, or
(4) scheduling this job would cause the load on its target machine to exceed a threshold
set by the machine's administrators.
Plans call for assigning four distinct states to these four conditions at some future
time.

ELIG_SBY The job is eligible to run, but only at standby.

HELDn The job has been explicitly held (using PHOLD) by either the user (U) who submitted
it, the user's coordinator (C), the PCS system manager (P), or some combination of
these three. Users can release their own holds, coodinators can release user holds as
well as their own, and PCS managers can release all holds (by using PREL).

The hold level n reveals who has placed the hold(s) on each job, according to this
chart:

Who has placed hold(s) Hold
 U C P Level
--------------------- -----
 X 1
 X 2
 X X 3
 X 4
 X X 5
 X X 6
 X X X 7

HLD_IDLE A user-level hold has been applied to the job because its use of CPU time has fallen
below a minimum threshold. The submitting user can remove this hold by running
PREL.

HOLDING The job is in the process of being removed from the run queue to be checkpointed
(only applies to machines that support checkpointing). After the job is checkpointed,
its status changes to HELDn, ELIG, or something else, depending on the reason for
the checkpoint.

JRESLIM The job exceeds the maximum number of concurrent jobs per bank or per user allowed
in this whole resource partition. See Resource Partition Limits (page 31). [Exemptable.
(page 51)] Not used on Moab-scheduled machines.

LCRM (DPCS) Reference Manual - 21

MULTIPLE The job has not yet started to run, and so it has a separate (perhaps unique) status
associated with each one of the multiple machines on which it might run later (e.g.,
each machine in a cluster). To report the job's unambiguous status for one specific
machine, use PSTAT's -m hostname option. To get a multiline report showing the
job's status on every machine where it could later run, use -M -n jid.

NEW The job has not yet been evaluated by the production workload scheduler (precedes
ELIG and other postevaluation states).

NOACCT The account to be charged for this job's resources (or the job owner's permission to
charge that account) has been removed. Not used on Moab-scheduled machines.

NOBANK The bank from which the job was to draw its resources no longer exists, or the
submitting user no longer has permission to charge against that bank. Not used on
Moab-scheduled machines.

NOCONF A machine where the user permitted the job to run has no valid configuration parameter
set assigned (this is an administrative error). The job's NOCONF status for that
machine prevents scheduling it on that machine, but it may still be scheduled on
another machine if permitted by the submitting user.

NODE>MAX The job requires more nodes (not CPUs) than the machine's administrator will permit
(per job) at the time of the status report. If the maximum allowed nodes per job later
increases, LCRM will reevaluate the job for scheduling. See also CPUS>MAX.
[Exemptable. (page 51)]

NODE<MIN The target machine has a minimum number of nodes/job threshold and this job requests
fewer nodes than the smallest allowed node allocation. If administrators later reduce
the size of the smallest allowed job, LCRM will reevaluate this job for scheduling.

NONEW An administrator has instructed LCRM to stop scheduling new jobs on a machine
where the submitting user has permitted the job to run. The job's NONEW status for
that machine prevents scheduling it there, but it may still be scheduled on another
machine if permitted by the user.

NOPRISRV The machine that the job is selected to run on is operating at a priority service level
(greater than normal), and the job's bank is not within the priority-service bank
(sub)tree. This status will persist until the machine returns to a normal priority service
level, or until the job is scheduled on a different machine without this constraint.

NOTIME The amount of time that will likely be consumed by the job exceeds the user's
remaining time in the bank from which the job is drawing resources on a machine
where the user permitted the job to run. The job's NOTIME status prevents scheduling
the job on that machine, but it may still be scheduled on another machine without this
constaint. However, jobs that linger in NOTIME status for a "prolonged period" are
purged to simplify future scheduling decisions. Not used on Moab-scheduled machines.

LCRM (DPCS) Reference Manual - 22

NRESLIM The job exceeds the maximum number of nodes per bank or per user allowed in this
whole resource partition. See Resource Partition Limits (page 31). [Exemptable.
(page 51)] Not used on Moab-scheduled machines.

NTRESLIM The job exceeds the maximum amount of node time per bank or per user allowed in
this whole resource partition. See Resource Partition Limits (page 31). [Exemptable.
(page 51)] Not used on Moab-scheduled machines.

PTOOBIG The maximum process size of the job exceeds the maximum permitted size of processes
on a machine where the user permitted the job to run. This prevents scheduling the
job on that machine, but it may still be scheduled on another machine that allows
larger processes. Not used on Moab-scheduled machines.

QCKPLIM The amount of available checkpoint space on a machine where the user has permitted
the job to run is less than a preconfigured minimum limit. This prevents the job from
being scheduled on that machine, but it may still be scheduled on another machine if
permitted by the user. Also, if more checkpoint space becomes available, LCRM will
reevaluate this status.

QTOTLIM The total number of batch jobs currently running on a machine where the user has
permitted the job to run matches or exceeds the maximum number of running jobs
allowed (by an administrator). This prevents scheduling the job on that machine, but
it may still be scheduled on another machine if permitted by the user. [Exemptable.
(page 51)] Not used on Moab-scheduled machines.

QTOTLIMU The total number of batch jobs owned by the user currently running on a machine
where the user has permitted the job to run matches or exceeds the maximum number
of running jobs allowed for any one user (by an administrator). This prevents
scheduling the job on that machine, but it may still be scheduled on another machine
if permitted by the user. [Exemptable. (page 51)] Not used on Moab-scheduled
machines.

REMOVED (Shows only if you use PSTAT's open-side -T option to report on done jobs.) The job
has been removed from the batch system by someone (its owner or a manager) running
PRM.

RES_WAIT The job requires more units of a declared nonshareable resource than are currently
available on its target machine(s). As the Managing Nonshareable Resources (page
48) section explains, LCRM no longer supports nonshareable resources so this status
has become obsolete. Not used on Moab-scheduled machines.

RM_INIT The job is in the process of being removed from the system (by running PRM).

RM_PEND The job is in the process of being removed but the removal request is not yet completed
by the production machine where the job is running (LCRM is awaiting removal
confirmation by the production machine's daemon).

LCRM (DPCS) Reference Manual - 23

RUN The job has been scheduled to run by LCRM and the underlying batch system (SLURM
or LoadLeveler) has confirmed that it is running.

RUN_SBY The job has been scheduled to run by LCRM and the underlying batch system (SLURM
or LoadLeveler) has confirmed that it is running, but only at standby (subject to a
warning signal or, if not registered for a signal, to immediate termination).

STAGING The job has been scheduled to run by LCRM but the underlying batch system (SLURM
or LoadLeveler) has not yet confirmed that it is running.

TERMINATED

(Shows only if you use PSTAT's open-side -T option to report on done jobs.) The job
was killed either by a LCRM manager or because it ran out of time.

TOOLONG The job's requested time limit exceeds the maximum amount of time allowed for jobs
on a machine where the user permitted the job to run. This prevents the job from being
scheduled on that machine, but it may still be scheduled on another machine that
allows longer jobs. Note also that requesting more time than a machine allows does
NOT remove that machine from the job's permitted-host list (page 19). So a job may
be reported as TOOLONG for several machines yet simultaneously be eligible to run
on several others (use PSTAT's -m option to check each machine separately).
[Exemptable. (page 51)] Not used on Moab-scheduled machines.

TQUOTA On a machine where the user permitted the job to run, the user's allocation or bank
has a per/user resource quota and the user has reached that quota. This prevents the
job from being scheduled on that machine, but it may still be scheduled on another
machine if the user permits. Not used on Moab-scheduled machines.

WAIT The user has specified the earliest time that the job is permitted to run, and that time
has not yet arrived.

WCPU Insufficient nodes are available to allow running this job (with its requested node
count) at this time.

WHOST LCRM's production workload scheduler daemon (pwsd) is not connected to the PCS
daemon on a machine where the user has permitted the job to run. LCRM assigns
WHOST as the job's status for the unconnected machine, but the job may still be
scheduled on another machine if the user permits (it may eventually be scheuduled
for the original machine if the system administrators correct the problem). WHOST
may also simply indicate that a specific machine's administrators have instructed
LCRM not to run any jobs on that machine (temporarily). Former state WSUBH,
which previously indicated a similar problem on the host where the job was submitted,
is no longer used because LCRM now immediately forwards every job's metafile
from its submitting host to the LCRM control host to avoid bottlenecks.

LCRM (DPCS) Reference Manual - 24

WMEM The machine(s) on which a job is permitted to run are already loaded to the extent
that scheduling this job would overload memory. Not used on Moab-scheduled
machines.

WMEML The load on the machine(s) on which the job is permitted to run is already higher than
the maximum load desired by the machine administrators (overloaded). [Exemptable.
(page 51)] Not used on Moab-scheduled machines.

WMEMT The load on the machine(s) on which the job is permitted to run is already as high as
the maximum load desired by the machine administrators (properly loaded). Not used
on Moab-scheduled machines.

WPRIO This job is not scheduled to run because scheduling it would delay execution of another
job with a higher priority.

LCRM (DPCS) Reference Manual - 25

Class Values for Batch Jobs
LCRM recognizes five job classes, which PSTAT usually reports using the following single-letter

codes:

N indicates a normal job. This is the default job class and most batch jobs are class N.

P formerly indicated a "short-production" job. Authorized users (only) could put a job
in the short-production class by using PSUB's former -sp option. In January, 2003,
LCRM stopped supporting -sp and all short-production jobs.

S indicates a "standby" job. Standby jobs increase machine utilization by taping cycles
that would otherwise remain idle. A standby job has such a low scheduling priority
that it runs only when no normal or expedited jobs are available to run (on a target
machine) and only if scheduling it will not slow the throughput of other normal or
expedited jobs already running. Furthermore, LCRM will terminate a standby job to
make its nodes or memory available if needed for any normal or expedited job that
becomes eligible to run after the standby job has started. If the standby job has
registered to take a warning signal (page 66), LCRM will signal it and allow the grace
period (configured for that machine) before termination. Otherwise, the job terminates
at once (no unsignalled grace period). Standby jobs are terminated "abnormally,"
never preempted so they can resume later. Use the PSUB or PALTER -standby option
to request this job class (see EZJOBCONTROL (URL:
http://www.llnl.gov/LCdocs/ezjob)). Starting in February, 2006, LCRM chooses
among available standby jobs based on their priority, not their size.

X indicates an "expedited" job. (page 50) Authorized users only can put a job in the
expedited class by using the PEXP (or special options of the PSUB or PALTER)
utilities.

indicates a "nonstop" or "nonpreemptable" job. (WARNING: starting in summer,
2004, PSUB's -np option, which formerly placed a job in a special class that prevented
it from being preempted for gang scheduling for up to 2 hours, became instead just
another way to specify CPUs per node).

Sometimes LoadLeveler (on an IBM SP machine) erroneously tells the LCRM job scheduler that no
classes exist. Pending jobs then move into the DEFERRED state to wait 10 minutes so the scheduler can
try again to get a more appropriate LoadLeveler response.

Beginning in 2001, LCRM supports the ASC tri-lab policy of allowing jobs in different classes (with
different levels of service) to accumulate charges against their owner's fair-share allocation at different
rates.

LCRM (DPCS) Reference Manual - 26

http://www.llnl.gov/LCdocs/ezjob

Run Properties of Batch Jobs
PSTAT optionally reports on many relevant properties of running (or recently completed) batch jobs

(besides their status (page 19) and class (page 26) values, described above). Using

pstat -n jid -f

"fully" reports on 34 different run properties of job jid, and the (nonobvious) fields in this full report are
explained below. Using

pstat -n jid -o prop1,prop2,...

reports just on the specific properties prop1 etc. that you specify, using as literal strings the field names
listed in the explanatory guide below. Not all properties included in a full -f report can be summoned
separately by using -o (for example, the session ID, the fair-share "resources used" index, and the "project
name" cannot). Every field that has no data displays as N/A. For help understanding the "resources used"
-f field, see "Usage and Its Decay" below (page 60).

The available run properties on which PSTAT optionally reports are listed here in alphabetical order
by PSTAT's -o field name (the corresponding descriptive label for -f reports appears in parentheses whenever
it is significantly different):

AGING_TIME is the date and time (e.g., 1/27/06 08:12:46) at which a nonrunning job became eligible
to be scheduled (the full-report field "submitted at" could be the same if the job had
no delaying dependencies, but not otherwise). For running or completed jobs this
property has no value, although you can still request it.

BANK specifies the bank (e.g., me) that this job will charge or has charged.

BATCHID is the job ID number also reported in the PSTAT full-report header and used with -n
to request data on a specific job (same as JID).

CL is the job's class (page 26), most useful for revealing if it has been successfully
expedited (class X).

CONSTRAINT shows the values that you specified with PSUB's CONSTRAINT (-c) and GEOMETRY
(-g) options when you submitted this batch job (they usually limit the machines or
nodes on which the job can run). Note that even if a constraint happens to also be a
node-pool name (such as pbatch), it has no effect on the pool to which LCRM assigns
the job (this is now specified only by PSUB's -pool option and reported in PSTAT's
POOL field).

CPN is CPUs per node, which SLURM manages as a separate, identifiable job constraint
on Linux (CHAOS) systems.

CPUS is the total number of CPUs assigned to this job by LCRM (this replaces the former
TASKS field in all -f and -o PSTAT reports).

LCRM (DPCS) Reference Manual - 27

DEPEND ("dependency") is the job ID of the job that must complete (or be removed) before
LCRM can schedule this job to run. If this job depends on no other job, the value of
this field is "none."

EARLIEST_START

("earliest start time") is the earliest date and time at which your job will begin to run
(if optionally specified by you using PSUB's -A option when you submitted the job).
Formerly called "do not run before" on PSTAT -f reports.

ECOMPTIME ("estimated completion") is the date and time at which your job will most likely finish
running. This estimate changes continuously because LCRM computes it using a
heuristic algorithm involving the CPU per-task time limit, the elapsed run time limit
(if any), the forced stop time (if any), and the rate at which the job is now using time
(time used divided by elapsed run time). Of course LCRM cannot predict when jobs
will abort because of internal flaws. There is no ECOMPTIME for nonrunning jobs,
and for completed jobs, this field is instead reported as "terminated at."

EXEHOST ("executing host") is the machine (e.g., Thunder) on which a running job executes
(null otherwise).

HIGHWATER ("largest process size") is the largest individual process size ever reached by this job
(its memory "high-water mark" so far). See also MEMSIZE, MAXPHYSS, and
MAXRSS for related values.

JID is the job ID number also reported in the PSTAT full-report header and used with -n
to request data on a specific job (same as BATCHID).

MAXCPUTIME

("time limit per task") is the maximum (average) per-task time limit that you declared
when you submitted this job. When the average (not total) time used by all tasks in
a job exceeds MAXCPUTIME, LCRM terminates the job.

MAXMEM ("process size limit") is the per-process memory size limit that you declared when
you submitted this job.

MAXNODES is the same as NODES (see below).

MAXPHYSS ("maximum physical size") is the maximum virtual memory actually used by the job
(per node) so far.

MAXRSS ("maximum resident set size") is the maximum real memory actually used by the job
(per node) so far.

LCRM (DPCS) Reference Manual - 28

MAXRUNTIME

("elapsed run time limit") is the maximum wall-clock time for this job that you
(optionally) declared with PSUB's -tW option when you submitted the job (reported
in hours:minutes). RUNTIME (below) shows the wall-clock time used so far.

MAXTIME is the former name of MAXCPUTIME, retained only for backward compatability
when you use PSTAT's -o option.

MEMINT ("resident memory integral") is the resident set memory integral in megabyte hours
(see also VMEMINT below).

MEMSIZE ("job size") is the job's current total memory size (the last measured sum of the memory
used by all processes in this job). See also HIGHWATER.

NAME ("job name") is the label that you assigned to this job (up to 15 characters) with PSUB's
-r option (e.g., E1A_ALE3D_1000), or by default is the name of the job's script file
(or your user name if there is no script file).

NODES ("node distribution") is the node count or range of nodes requested by a job that has
not yet started to run, and it is the actual number of nodes assigned to the job after it
has started to run.

POOL is the node pool (if any) on the executing host to which LCRM assigned this job based
on the argument that you provided to PSUB's -pool option. CONSTRAINT values
(-c), even if they happen to be node-pool names (like pbatch), no longer affect LCRM's
actual pool assignment.

PRIORITY is the job's relative scheduling priority (e.g., 0.438). The section below (page 41)
called "Algorithm for Job Scheduling" explains how LCRM computes this priority.

RUNTIME ("elapsed run time") is the elapsed wall-clock time since this job began executing
(reported in hours:minutes). The limit on RUNTIME (if any) is in MAXRUNTIME.

SID ("session ID") is the session assigned to this job by the kernel (e.g., thunder101.28394).

STATUS is the job's current LCRM status (e.g., RUN). See the section above (page 19) on
"Status Values" for a list of possible statuses and tips on interpreting them.

STOPTIME ("must stop at") is the date and time at which a job must be removed if someone has
invoked PRM to stop it. For most jobs, the STOPTIME value is N/A (not applicable).

SUBMITTED ("submitted at") is the time of day and date at which this job was submitted to LCRM
by PSUB.

TASKS (obsolete) has been replaced by CPUS as a requestable field in PSTAT -o reports.

LCRM (DPCS) Reference Manual - 29

TIMECHARGED

("time charged") is the sum of the CPU times used by all CPUs for a job in
hours:minutes (much larger than USED if the job has many tasks on many CPUs, but
the same if it needs only one CPU). TIMECHARGED includes the time that CPUs
allocated to this job may have been idle (a previous PSTAT report of "time used"
excluding idle but allocated CPUs was dropped in February, 2006).

USED ("time used per CPU") is the total "time charged" (above) divided by the number of
CPUs allocated to the job even if idle. USED is thus an average, not a summative
value.

VMEMINT is the "physical memory integral" in megabyte hours (see also MEMINT above).

XCT ("expedited count") has been replaced by CL (above).

LCRM (DPCS) Reference Manual - 30

Resource Partition Limits
In February, 2002, LCRM began supporting "resource partition limits" for each bank and each user.

A LCRM "resource partition" is a set of similar or related computers (such as all Thunder nodes) that
LCRM manages together when scheduling jobs. (See the Bank and Allocation Manual (URL:
http://www.llnl.gov/LCdocs/banks) for the current list of LCRM resource partitions.)

For each separate resource partition, LCRM administrators can set a limit on:

• the maximum number of concurrent jobs allowed per bank, per user, or both,

• the maximum number of nodes committed to (jobs from) each bank, each user, or both, and

• the maximun node time (in minutes) allowed for (jobs from) each bank, each user, or both.

(The default initial setting for all three limits is "unlimited.") Note that these resource partition limits are
not enforced (nor reported by PSTAT) on any Moab-scheduled machines.

EFFECTS.
(1) Enabling these partition limits will prevent some batch jobs from running in a "global" way that may
not be apparent by looking at each job's characteristics alone. For example, if the maximum number of
concurrent jobs allowed per bank (in a partition) is four, then LCRM will not schedule any fifth job that
draws resouces from that bank to run, regardless of how the four running jobs are spread among the many
nodes or users in that partition.
(2) Once any enabled partition limit is hit, LCRM will assign to all queued and not yet running jobs a new
status (page 19) that reveals which limit prevents the job from running:

JRESLIM means that the job would exceed the maximum job limit.

NRESLIM means that the job would exceed the maximum node limit.

NTRESLIM means that the job would exceed the maximum node-time limit.

(3) Enabling these limits will reduce machine utilization and may cause scheduling anomalies (such as not
running low-priority jobs as "backfill" for high-priority jobs). If the limits are set on high-level banks, there
is no easy way to identify just which jobs (that charge against the children of these banks) are causing
queued batch jobs not to run. For predictable scheduling, user limits may prove easier to use than bank
limits.

REPORTING.
The BRLIM utility reports for a specified bank or user (or set) the currently assigned values of all three
possible "resource partition" limits and the current commitment of resources (called "usage") against each
limit. This helps predict whether a proposed new batch job would exceed any relevant limit and thus not
be scheduled. Note that BRLIM does not report on individual jobs (as PSTAT does), but rather on user or
bank aggregate limit commitments (very like traditional allocations). See the BRLIM section of LC's Bank
and Allocation Manual (URL: http://www.llnl.gov/LCdocs/banks) for execution details, control options,
and annotated usage examples.

LCRM (DPCS) Reference Manual - 31

http://www.llnl.gov/LCdocs/banks
http://www.llnl.gov/LCdocs/banks
http://www.llnl.gov/LCdocs/banks

EXEMPTIONS.
LCRM resource partition limits are "exemptable." Authorized users (page 53) (only) can invoke the
-exempt option of PSUB or PALTER to override limits that would otherwise prevent their batch job from
running. (Actually, the limit status values JRESLIM, NRESLIM, and NTRESLIM are used to request the
exemption.) See the Exempting Jobs (page 51) section below for full instructions on how to use such
exemptions. Note that on Moab-scheduled machines these limits are already not enforced (or reported by
PSTAT).

LOCAL LIMITS.
One may easily confuse these three global job limits, that apply to an entire LCRM resource partition, with
the more familiar local limits that apply to specific nodes in each cluster of machines. Such local limits
are not reported by BRLIM; instead consult LC's composite job-limits web page (uses OTP authentication)
at

https://lc.llnl.gov/computing/status/limits.html

The BRLIM-reported JRESLIM, NRESLIM, and NTRESLIM limits (if not set to "unlimited") are
superimposed over the local limits, which is why predicting their effect on your job is so tricky (but with
version 6.12 in spring, 2005, internal changes to LCRM made implementation of such limits more consistent
across all machines).

LCRM (DPCS) Reference Manual - 32

https://lc.llnl.gov/computing/status/limits.html

Environment Variables for Batch Jobs
FORMER ENVIRONMENT DEPENDENCY.

For each job that it begins on your behalf, LCRM first sets your ENVIRONMENT environment variable
to the value BATCH, and then it sources (invokes) your dot files (such as .cshrc and .login). Previously,
if your dot files forced ENVIRONMENT to the value INTERACTIVE, your LCRM-managed batch job
might not have run. Starting with LCRM version 6.14 (February, 2006), this dependency has ended: LCRM
still initially sets your ENVIRONMENT environment variable to BATCH, but it now runs your job
regardless of whether you later change the value of ENVIRONMENT. Of course, you could still have
problems if your script tests ENVIRONMENT and expects to find BATCH as its value.

OBSOLETE VARIABLES.
On machines (such as HP/Compaqs) where NQS was the low-level batch system underlying LCRM, six
environment variables had been used to preserve information about your submittal environment:

 QSUB_HOME
 QSUB_LOGNAME
 QSUB_MAIL
 QSUB_PATH
 QSUB_SHELL
 QSUB_TZ

Now that LC's Trivial Batch System (TBS) has completely replaced NQS, these environment variables
are no longer used by LCRM for any purpose.

DEPRECATED VARIABLES.
These environment variables were formerly used to support NQS. LCRM now uses a specified replacement
variable for each role (as noted below), so these variables are now deprecated:

QSUB_HOST contained the name of the host (machine) where your job originated (replaced by
PSUB_HOST).

QSUB_REQID

contained the NQS identifier assigned to your job ("request") (replaced by
PSUB_JOBID).

QSUB_REQNAME

contained the NQS name of your job ("request"), as you specified by using PSUB's
-r option (replaced by PSUB_REQNAME).

QSUB_WORKDIR

contained the pathname of the current work directory at the time you submitted your
job (replaced by PSUB_WORKDIR).

SET BY LCRM.
To facilitate submitting a job on one machine but executing it on another (or on various others at different
times), LCRM sets some special environment variables on your submittal machine (to capture decisions

LCRM (DPCS) Reference Manual - 33

made where you ran PSUB) and sets others on your execution machine, all to create an appropriate context
for your job's successful run. Those environment variables are listed here, each marked "submittal" or
"execution" and with its computational role explained. You can use (evaluate, test on) these PSUB-named
environment variables in any script that will run under the control of LCRM, regardless of where it runs.
For some jobs, the exact sequence of LCRM's variable-setting process is important, so that sequence is
described in detail in the "Batch-Job Environment Variables" section (URL:
http://www.llnl.gov/LCdocs/ev/index.jsp?show=s3.4) of LC's Environment Variables user guide.

If you submit a batch job using the PSUB emulator on an LC machine that has Moab installed in place
of LCRM, then Moab mimics LCRM and sets the same PSUB environment variables (listed below) for
use by your job when it runs. If you convert your job-control script to Moab format, however, and submit
it using MSUB, then Moab sets none of these PSUB variables and relies exclusively on environment
variables set by SLURM instead. See the "Environment Variables in LCRM and Moab" section (URL:
http://www.llnl.gov/LCdocs/moab/index.jsp?show=22.3) of the Moab at LC user guide for more background.

PSUB_DEP_JOBID

(submittal) if your job starts another, dependent job, then PSUB_DEP_JOBID contains
the LCRM job ID of the originating job on which the second one depends (which
you could echo in its log file to help with dependency tracking later). See also
PSUB_JOBID.

PSUB_HOME (submittal) preserves the HOME environment variable in effect when you submitted
your job.

PSUB_HOST (submittal) contains the name of the host from which the job was submitted.

PSUB_JOBID (submittal) contains the identifier assigned to the job by LCRM (see also
PSUB_DEP_JOBID above).

Echoing the value of this PSUB_JOBID variable in your job script can avoid a common
job-tracking problem with LCRM. The PSUB job-monitoring utility reports only on
"waiting" or running jobs, not on completed jobs. So you will not be able to discover
the job ID of a completed job once it ends, a debugging obstacle if you run several
jobs. It is therefore good practice to include a request to echo into your log file the
value of this environment variable at the start of every job, thusly:

 echo LCRM job id = $PSUB_JOBID

The output will be the 5-digit number that uniquely identified the current job to LCRM
while it ran.

PSUB_LOGNAME

(submittal) preserves the LOGNAME environment variable in effect when you
submitted your job.

LCRM (DPCS) Reference Manual - 34

http://www.llnl.gov/LCdocs/ev/index.jsp?show=s3.4
http://www.llnl.gov/LCdocs/moab/index.jsp?show=22.3

PSUB_REQNAME

(submittal) contains your job's request name, if you specified one with PSUB's -r
option.

PSUB_SHELL (submittal) preserves the SHELL environment variable in effect when you submitted
your job.

PSUB_SUBDIR

(submittal) contains the pathname of the current directory in effect on the machine
from which you submitted your job. See also PSUB_WORKDIR.

PCS_TMPDIR (execution) specifies the location of a temporary working directory that LCRM creates
when a job starts, that persists during the whole job, and that is automatically purged
when the job completes. System administrators toggle the use of this environment
variable and configure the directory name, if any (if none, then LCRM creates no
such temporary directory). See also PSUB_SUBDIR and PSUB_WORKDIR.

PSUB_TZ_ENV (submittal) preserves the TZ (time zone) environment variable in effect when you
submitted your job.

PSUB_USER (submittal) preserves the LOGNAME (same as USER) environment variable in effect
when you submitted your job, the same as PSUB_LOGNAME.

PSUB_WORKDIR

(execution, formerly indentical to PSUB_SUBDIR, changed January, 2003) contains
the same value as PCS_TMPDIR if that environment variable is set. Otherwise,
contains the pathname of your home directory on the execution (not the submittal)
machine. See also PSUB_SUBDIR.

SAVED ONLY BY REQUEST.
Aside from the list specified above, all your other submittal-machine environment variables are NOT saved
(exported) by default. However, at the time you submit the job you can overtly request that LCRM save
(export) all of your environment variables by using PSUB's -x option. Running PSUB with -x additionally
saves every environment variable that you set on your submittal machine under the same name they had
originally, without prepending PSUB_ to the name.

PARALLEL-JOB VARIABLES.
Massively parallel batch jobs usually depend on additional, specialized environment variables (some
available only for noninteractive jobs) that control the behavior of (1) the message-passing interface (MPI)
for between-process communication, and (2) any POSIX threads (pthreads) that the job may create for
within-process concurrency. For the roles of these "parallelization" environment variables and their default
values under AIX on LC's IBM machines, see the POE (Parallel Operating Environment) User Guide
(URL: http://www.llnl.gov/LCdocs/poe) or the "User-Setable Variables" section (URL:
http://www.llnl.gov/LCdocs/ev/index.jsp?show=s3.3) of LC's Environment Variables user manual.

LCRM (DPCS) Reference Manual - 35

http://www.llnl.gov/LCdocs/poe
http://www.llnl.gov/LCdocs/ev/index.jsp?show=s3.3

On LC Linux (CHAOS) machines, where SLURM is the low-level batch system underlying LCRM,
SLURM also uses its own distinct set of environment variables to support each executing task (all begin
with the string "SLURM_"). See the "Environment Variables" section of the SLURM Reference Manual
(URL: http://www.llnl.gov/LCdocs/slurm) for an explanatory list of SLURM's unique variables.

OTHER SPECIAL LCRM VARIABLES.
(A) for job reporting you can store a comma-delimited string of arguments for PSTAT's -o option in the
environment variable PSTAT_CONFIG for easy repeated use.
(B) Starting in February, 2006, LCRM tracks your job's "series ID" value in the environment variable
LCRM_SERIESID. This value is used internally (only) by LCRM to distinguish different jobs that end
up with the same job ID after the ID numbers wrap around and begin to repeat.

CHECKPOINT VARIABLES.
On AIX machines that also use SLURM (not IBM's LoadLeveler) to manage job resources, checkpointing
terminated jobs is again possible. SLURM (with POE) relies on three dedicated environment variables to
enable checkpointing: CHECKPOINT, MP_CKPTFILE, and MP_CKPTDIR. See "Checkpointing with
SLURM and POE" below (page 93) for details.

LCRM (DPCS) Reference Manual - 36

http://www.llnl.gov/LCdocs/slurm

Comment and Shell Handling
The basic and typical uses of comments within batch scripts are shown and explained in the "Annotated

Typical Batch Script" section (URL: http://www.llnl.gov/LCdocs/ezjob/index.jsp?show=s4) of the
EZJOBCONTROL guide.

The underlying rules for batch-script comments under LCRM are:

• Using # in the first column makes a line a comment. For example,

 #this is a comment line.

• Using the syntax #!shellpath on the first line of your script makes a special comment that declares
the shell your job should invoke. For example,

 #!/bin/csh

invokes the C shell.

• Using #PSUB (all uppercase) makes a comment line into an imbedded command to the PSUB
job-submittal utility. Imbedded PSUB commands have the same effect as options on PSUB's interactive
execute line. For example,

 #PSUB -r jobname

declares a nondefault name for your job ("request").

• Explanatory comments can be included at the end of the same line with imbedded PSUB commands
by preceding the comment string with #, such as

 #PSUB -r jobname # declares job's name

• Scripts inherited from native-NQS batch systems that use QSUB commands may end up with
imbedded PSUB and QSUB commands mixed as comments at the start of the script, such as:

 #!/bin/csh
 #PSUB -r job1
 #QSUB -r job2
 #other comments here

This is harmless because of the special way LCRM handles comments, as explained below.

Because of possible PSUB/QSUB command mixing, LCRM actually REMOVES from all submitted
scripts all comment lines other than the initial #!shellpath comment (if any) before forwarding the job file
to the underlying batch system (e.g., TBS) to run. This "comment cleaning" eliminates any stray QSUB
commands in the script that might otherwise contradict the PSUB commands that are intended to dictate
(via LCRM) how the job executes. If you neglect to supply a shell-specifying #! comment, however, this
process leaves no comment lines at all.

TBS (the underlying batch system on LC Compaqs) and SLURM (the underlying system on LC Linux
machines) always set the default shell to the Bourne shell (SH), instead of to your login shell, if your script
does not begin with a comment line. This default means that jobs intended to run under the CSH or Korn

LCRM (DPCS) Reference Manual - 37

http://www.llnl.gov/LCdocs/ezjob/index.jsp?show=s4

shells could fail with serious errors. To compensate, the PSUB utility now guarantees that, despite the
"comment cleaning" process just noted, at least one blank comment line remains at the top of every submitted
script file. However, prudence suggests that you always specify your desired job shell overtly with a line
of the form #!shellpath as the first line in every batch script you submit. This precaution completely avoids
the danger that LCRM comment removal will cause your script to fail.

LCRM (DPCS) Reference Manual - 38

Job Scheduling
This section explains the LCRM limitations on the number of jobs that any single user can submit,

then gives the order in which LCRM checks conditions that preclude scheduling a submitted batch job,
then descibes in detail the job-scheduling algorithm itself.

Order of Checking Precluding Conditions

DELAYS.
LCRM allows system administrators to specify (to configure by using the LRMMGR utility) the maximum
number of jobs per user that it will actively consider for scheduling. The LRMMGR command

update global maxjobsperuser n
sets n as the maximum allowed jobs per user (integers greater than 0, up to the special value of
UNLIMITED). Jobs that a user submits above this limit LCRM delays from active consideration for
scheduling. Such excess jobs get the PSTAT state DELAYED. As "active" jobs are gradually scheduled,
LCRM automatically moves (first in, first out) each user's delayed job(s) back into active consideration.
(NOTE: if a system administrator increases MAXJOBSPERUSER while some jobs are already delayed,
they will still gradually follow this first-in-first-out path, rather than all suddenly becoming active.)

LCRM also lets system administrators specify the maximum number of delayed jobs per user. The
LRMMGR command

update global delayedjoblimit n
sets n as the largest number of delayed jobs that any single user is allowed to accumulate (integers from 0
to UNLIMITED, inclusive). When a user reaches this delayed-job limit, LCRM refuses to accept any more
job submittals from that user. (NOTE: the LRMMGR command "show global" reports the current values
of the two job limits discussed here, along with other global parameters.)

PRECLUDING CONDITIONS.
Every 20 seconds LCRM evaluates submitted (and not delayed) jobs to see which, if any, should be
scheduled to run. It begins by checking, in a specific order, a long list of conditions each of which precludes
scheduling the job (and each of which corresponds to one job-status code that PSTAT can report).

An earlier section (page 19) explains and interprets these status codes (in alphabetical order for easy
reference). Here we list the job-status codes in the order in which LCRM checks their conditions to test if
a job is precluded from scheduling:

LCRM (DPCS) Reference Manual - 39

Scheduling precluded because
job is already scheduled:
 STAGING
 BAT_WAIT
 RUN

Scheduling precluded
for another reason:
 DEFERRED
 DEPEND
 HELDn
 WAIT
 USED>MAX
 NOBANK
 NOACCT
 ACCOVER
 WHOST
 NOCONF
 TQUOTA
 NOPRISRV
 PTOOBIG
 TOOLONG
 NOTIME
 NONEW
 QTOTLIM
 QTOTLIMU
 QCKPLIM

LCRM (DPCS) Reference Manual - 40

Algorithm for Job Scheduling

If no conditions preclude a job from being scheduled on every available machine (see the previous
section (page 39)), the job enters a pool of candidate jobs to which the LCRM scheduling algorithm is
applied. More precisely, LCRM constructs a list of schedulable jobs for each machine in each LCRM
domain. A job may be in several scheduling lists if the user has permitted the job to run on more than one
machine. (Starting in 2001, LCRM does not attempt to schedule every available machine ("compute server")
during every scheduling cycle. There are now so many different machines that the LCRM scheduling
interval for each is configurable, to allow more flexible use of LCRM resources.) Also, starting in February,
2006, a job submitted with no constraints on where it should run will run on any machine within the LCRM
resource partition from which it was submitted.

DOMAIN SCOPE.
All OCF (open-network) machines scheduled by LCRM lie in a single LCRM scheduling domain: you
can therefore submit (PSUB) a job on any OCF machine to run on any other, or monitor (PSTAT) any job
from any machine. Starting in September, 2005, however, LCRM divided SCF (secure-network) machines
ito two disjoint scheduling domains (based not on operating system but on underlying batch system). One
SCF domain contains all LoadLeveler machines (UM, UV, Tempest; these are also all AIX machines).
The second SCF domain contains all SLURM machines (ACE, Lilac, GViz, and PU). Note that PU is an
AIX machine that nevertheless uses SLURM rather than LoadLeveler to manage its jobs. WARNING:
LCRM tools (such as PSUB and PSTAT) only work with hosts within a single domain, not across scheduling
domains. Consequently, on SCF, you cannot submit or monitor LoadLeveler jobs from SLURM machines
or vice versa.

JOB PRIORITY.
Each job is assigned a priority, and then each list of jobs is sorted by job priority. (On LC machines where
Moab has replaced LCRM as the job scheduler, Moab has been configured currently to use the same three
subpriorities, weighted in the same way, as LCRM uses.) A job's overall priority for a machine, p[j,m], is
a function, a weighted sum of three subpriorities:

p[j,m] = (tp[j] * tw[m]) + (ap[j] * aw[m]) + (pp[j] * pw[m])

LCRM (DPCS) Reference Manual - 41

where

tp[j] is the job's technical priority (a measure of its likely efficiency or ability to use
resources well). LCRM looks at both the "memory advisory" hint that you (optionally)
provide with the PSUB -lM option and at your (recent) historical memory usage
patterns (which you can check by running PHIST) to estimate your job's memory
demands when guessing its efficiency.

As of May, 2003, the official formula for technical priority is:

tp[j] =

[timeprioweight * MIN(1.0, requested_time/idealjobduration] +

[nodeprioweight *
MIN(1.0, 5.0/(5.0 + ABS(requested_nodes - idealnodecnt))]

In this formula, authorized users (page 53) (only) can use the LRMMGR (formerly
PCSMGR) commands

 create|update config cname aname avalue

to specify for a configuration cname a value avalue for any of the four
technical-priority attributes aname shown above. In particular, aname can be:

timeprioweight (default is 0.0) specifies the fraction of the time-based term (first
line above) used to compute the technical priority.

nodeprioweight (default is 1.0) specifies the fraction of the node-based term (second
line above) used to compute the technical priority.

idealjobduration (default equals 24h) specifies the smallest job duration that would
maximize the time-based term (first line above) used to compute
the technical priority.

idealnodecnt (default equals 32 nodes) specifies the number of nodes that, if
requested for a job, will maximize the node-based term (second line
above) used to compute the technical priority.

ap[j] is the job's aging priority (a measure of its starvation for resources).

pp[j] is the job's political priority (a measure of the share of resources that have been
consumed by the job's user or bank compared with the share of resources that should
have been consumed).

tw[m] is the technical-priority weight for the target machine, set by its administrators.

aw[m] is the aging-priority weight for the target machine, set by its administrators.

pw[m] is the political-priority weight for the target machine, set by its administrators.
LCRM (DPCS) Reference Manual - 42

LOAD BALANCING.
The load on every LCRM-managed machine is sampled (there is a smoothing factor to damp oscillations).
The list of machines is then sorted in inverse order by load (or from lightest loaded to heaviest loaded).
Before August, 2001, LCRM considered only memory load, but now it considers both memory load and
processor load on all shared SMP computers (to improve the performance of parallel jobs that demand
many processors).

For each machine in order, LCRM tries to schedule one and only one job. If any job is scheduled on a
machine, it will normally be the highest priority job in the list of jobs that can be scheduled on that machine.
If a job is scheduled on a machine, the job is removed as a candidate to be scheduled on any other machines
before those machines are evaluated to see if a job can be scheduled on them.

JOB SCHEDULING.
For each machine that LCRM manages:

• If the load on the machine exceeds target maximums, then, if the machine supports checkpointing,
then the lowest priority running job is checkpointed. No job is scheduled on the machine.

• If there are no schedulable nonrunning jobs for the machine, then no job is scheduled on the machine.

• If the highest priority nonrunning job for the machine is an expedited or short-production (now
obsolete) job, then it is scheduled on the machine.

• If the minimum number of high-priority jobs is not yet running on the machine and if scheduling the
highest priority nonrunning job on the machine would not likely cause the load on the machine to
exceed target maximums, then it is scheduled on the machine.

• If the minimum number of high-priority jobs is not yet running on the machine and if scheduling the
highest priority nonrunning job WOULD likely cause the load on the machine to exceed target
maximums, then if the machine supports checkpointing and if the highest priority nonrunning job
has a priority higher than the lowest priority running job and if the lowest priority running job has
already exceeded its do-not-disturb time, then it is checkpointed, but no new job is scheduled on the
machine.

• If this point in the algorithm is reached, the minimum number of high-priority jobs is running on the
machine. LCRM then picks the "best" job as a candidate to run on the machine. The "best" job is
currently defined as the job with the highest technical (not overall) priority.

• If the "best" job would not likely cause the load on the machine to exceed its target maximums, then
it is scheduled to run on the machine. (On all machines except BlueGene/L, where the architecture
is too complicated to allow it, LCRM will also "backfill schedule," that is, it will start lower priority
jobs as long as doing so will not delay the start of higher priority jobs. LCRM administrators can
choose to disable such backfilling.)

• If the load on the machine exceeds target minimums, and if either the machine does NOT support
checkpointing or both the machine supports checkpointing and none of the running jobs have
consumed their do-not-disturb time, then no job is scheduled on the machine.

LCRM (DPCS) Reference Manual - 43

• If the running job with the lowest priority is lower in priority than the "best" job that is not running,
and if the machine supports checkpointing, then the lowest priority running job is checkpointed. No
new job is scheduled on the machine.

• LCRM computes how over- or under-serviced a user or bank is by looking at both actual recent
usage and the "anticipated cost" of currently running jobs, where the later is some fraction of each
running job's requested time and nodes. LCRM managers can specify the fraction of running-job
cost that they want used to compute the "anticipated cost" (for each separate resource partition) by
using the LRMMGR input line

 update partition pname comfact costratio

where costratio is a decimal number between 0.0 and 1.0 inclusive.

LCRM (DPCS) Reference Manual - 44

Output Truncation
LCRM truncates standard output from each executing program to 999,999 bytes. Therefore, if your

batch job runs any programs that are likely to generate more than about 1 Mbyte of output, your script
should explicitly redirect that output to a specific file instead of relying on standard output. A simple
example would be

 /usr/bin/spell test001 >! sp.out

Redirecting with file overwrite (>! instead of >) reduces the chance of failure if the job must be rerun in
whole or in part because of a problem.

LCRM (DPCS) Reference Manual - 45

Reporting Memory and Time Used
Discovering for a specific job (rather than generally for a user or bank) the

• current memory size,

• high-water mark memory used, and

• computer time used so far

is often desirable. The PSTAT utility provides several options that report these three job features (and
related others), either alone or as part of a general job summary.

Once a job (whose LCRM identifying number is jid) has started to run on a specific machine, you can
use

pstat -n jid -f

to simultaneously report 34 job properties (a "full" report). Included in this summary are the job's current:

• "job size" (last measured sum in Mb of the memory used by all processes in the job),

• the largest process size reached by the job (its high-water mark so far),

• the "elapsed run time," which is the wall-clock time since the job began executing, and

• total "time charged" (in hours:minutes) so far by all CPUs allocated to this job, including idle time
on allocated CPUs. (A former field reporting "time used" excluding idle allocated CPUs was dropped
in February, 2006.)

Or you can use

pstat -n jid -o memsize,highwater,timecharged

(where "memsize" and "highwater" and "timecharged" are literal arguments to the -o option, NOT variables)
to report exclusively on the interesting values of current and maximum memory size and total time charged
so far. (The literal "used" reports average time used per CPU, instead of total time for all CPUs. Or consider
the literals "maxrss" and "maxphyss" to separately report maximum real and virtual memory used per
node.)

Full (-f) PSTAT reports but not -o reports also include a field called "resources used" that represents
a weighted sum of CPU time and memory resources that LCRM uses for fair-share scheduling (internally).
This is the job's aggregate resource unit (AGU) value; for details see "Usage and Its Decay" below (page
60).

For 5 days after a job has completed you can still report its last-measured memory size, its high-water
mark memory, and its total time used by typing

pstat -n jid -T -o memsize,highwater,timecharged

For information on done jobs later than 5 days after their completion, see the next section. For other fields
that you can report with PSTAT's -o option, see the Run Properties (page 27) section above (for example,
"cpus" reports the actual number of CPUs assigned).

LCRM (DPCS) Reference Manual - 46

Reviewing Log Files for Done Jobs
The log file that your own batch job makes for itself reveals the steps executed according to your batch

script, but not the constraints or parameters with which you submitted the job nor the resource problems
the job may have encountered. Sometimes after a job ends, especially if it died before successful completion,
you may need to reconstruct exactly how you sumbitted it or why (or when) it got into trouble. LCRM
keeps itemized log files that can sometimes answer these questions about done jobs.

ALL USERS.
For the first 5 days after an LCRM job ends, you can use PSTAT with the -T option to retrieve (some of)
this log information yourself (see the previous section (page 46) for tips).

Beyond the 5-day PSTAT limit, you can ask an LC Hotline technical consultant to log on to the LCRM
"control host" that serves the machine where your batch job ran. Three LCRM log files reside there that
might reveal state changes relevant to job misbehavior. To discover which control host serves your batch
job's execution machine, log on to that machine and type

grep CONTROL_HOST /dpcs/adm/lrm.ctl

This returns a line of the form CONTROL_HOST=hostname (where the value of hostname is usually
either OLRM or SLRM).

AUTHORIZED USERS.
LCRM system administrators and LC Hotline technical consultants (only) can run SSH to log on to the
LCRM control hosts and explore the contents of three LCRM system logs kept there in directory /dpcs/adm:

exp.log shows the histories of all expedited batch jobs.

jobstat.log records the state-change histories of all batch jobs by job ID (JID) number and by
user's name.

lrmmgr.log shows the history of LRMMGR actions, such as the setting or unsetting of
[NO]RUNNEW and related bank changes.

Users authorized to run on the LCRM control-host machines can search any of these log files for clues
about your job's behavior by using standard UNIX tools, such as GREP. This table shows some of the most
useful log-file searches:

Command LineSearch Goal
grep jid jobstat.logJob JID's state-change history
grep jid jobstat.log | tailWhy job JID ended
grep username jobstat.log | moreAll the job states recorded for one user
grep runnew lrmmgr.logThe history of [NO]RUNNEW updates
(use week?/fname.log
in place of fname.log
in the above commands)

A 4-week LCRM archive review

LCRM (DPCS) Reference Manual - 47

DFS and DCE Interactions with Batch
DFS is LC's Distributed File System, a separate set of disks managed by special software so that they

appear as local disks on many physically distributed computers at once. DFS provides very fine-grained
(user-by-user) control over access to individual files compare to ordinary UNIX (which can be important
for export control purposes). And DFS provides a high level of security using DCE (Distributed Computing
Environment) password management on machines where DCE is supported.

Before January, 2003, PSUB would try to get the DCE credentials of every user who submitted a batch
job on any DCE-enabled machine. Now, LC's OCF machines use one-time passwords (OTP) instead of
DCE passwords. And some massively parallel (IBM/POE) machines never did support DCE credentials
and hence issued warnings for every submitted job.

Until January, 2003, users had to invoke a special -noDFS option when they ran PSUB to avoid these
problems. Now, LCRM no longer supports DFS/DCE access in any way. Compensating precautions are
no longer needed, and hence the former -noDFS option has disappeared from PSUB.

Managing Nonshareable Resources
Beginning in December, 1999, LCRM could be used to manage any computing resources declared to

be nonshareable (such as local temporary disk space, software licenses, or tape drives). Special LRMMGR
(nsresource), PSUB (-ns), and PSTAT (RES_WAIT) features were installed specifically to support
nonshareable resource management. In January, 2003, all such features were removed from LCRM because
no one used them.

LCRM (DPCS) Reference Manual - 48

Expediting and Exempting Jobs
Beginning in 2001 (on both OCF and SCF machines), the PSUB and PALTER utilities were enhanced

to let authorized users independently:

• EXPEDITE a job (specify that it should start as soon as possible, even preempting other jobs to do
so), or

• EXEMPT a job from specified system limits or administrative constraints on job size or number
(also misleadingly called "statuses") that control when it normally runs, or

• force the execution PRIORITY of a job to a specified value (that is, a value not computed in the
usual way by LCRM).

The subsections of this section tell how to perform each of these separate tasks by using PSUB (if the
job is new) or PALTER (if the job has already been submitted). To be authorized to use PSUB and PALTER
in these special ways, you must be either:

• an LCRM manager who is also an LCRM "expeditor," or

• a coordinator of a bank that is a parent of the bank from which the job is drawing its resources, and
who is also an LCRM "expeditor," or

• a user who owns the job and who has been given permission for a specfied number of days by
someone in the previous two authorized groups. Special LRMMGR options (explained in the last
subsection (page 53) below) grant these permissions to users.

Until May, 2003, the special users entitled to expedite or exempt jobs were reported by LCRM not as
"expeditors" but as having "e" access or "e" permission. Now, using the LRMMGR command

 show user uname

will report "User is an LCRM expeditor" (if they are), while using

 show expeditor uname

will either confirm this status by returning uname or instead state "User uname is not an expeditor."

LCRM (DPCS) Reference Manual - 49

Expediting Jobs

HOW TO EXPEDITE.
Expediting a job means giving it such a strong scheduling preference that it starts as soon as possible, even
stopping standby jobs if necessary (see below). Authorized users (page 53) can expedite a batch job by
following these steps:

(1) Submit the job as usual by running PSUB, but include the special -expedite option on the execute
line as well:

psub usualopts -expedite jobname

If you are not authorized to expedite jobs, your job will still be accepted by LCRM but the expedite request
will be ignored. If you have already submitted an LCRM job and then decide you want it expedited, use
PALTER as shown below. Currently, LCRM imposes no limit on the number of simultaneous expedited
jobs.

(2) Discover the LCRM job ID by running PSTAT (use the -A option to see all jobs if you are not the
job's owner).

(3) Use the job ID (jobid) in this PALTER execute line to expedite the already-submitted job:

palter -n jobid -expedite

(4) Similarly, to cancel expedition of a previously expedited job, use this PALTER execute line:

palter -n jobid -noexpedite

Previously, the PEXP utility expedited jobs. PEXP has been rendered obsolete by the foregoing features
of PSUB and PALTER, but for historical consistency you can still use it as in the past. And PEXP users
who want to cancel expedition of a previously expedited job can now type

pexp jobid -noexpedite

On IBM SP computers (only), LCRM can now immediately start an expedited job because of its
enhanced ability to preempt running jobs by using refined memory-management features. However, PSUB's
-A option (which specifies an earliest start time) dominates the -expedite option, so no job ever starts before
its -A time, even if you expedite it.

EXPEDITE CONSEQUENCES.
Expediting one job often affects other running jobs on the machine where LCRM starts the newcomer.
The LCRM goal is to maximize node use. Consequently, LCRM starts the expedited job on free nodes if
enough are available. If not, LCRM terminates standby jobs until enough nodes are released to start the
expedited job. (The plan to take the further step of preempting even normal jobs to make their nodes
available for expedited jobs was never implemented by LCRM for lack of underlying support from IBM's
native LoadLeveler scheduler.)

LCRM (DPCS) Reference Manual - 50

Exempting Jobs

Exempting a job means allowing it to run even if it exceeds administratively imposed constraints (such
as on number of CPUs needed or maximun job size) that prevent other jobs from running. These general,
systematic constraints are often called LCRM "statuses" to distinguish them from the user-imposed
constraints that you specify with PSUB's -c option (and because PSTAT reports the ones that currently
block a job from running as the job's "status"). Authorized users (page 53) can exempt a batch job by
following these steps:

(1) Submit the job as usual by running PSUB, but include the special -exempt option on the execute
line as well:

psub usualopts -exempt ['statuslist'] jobname
where statuslist is an optional, single-quoted, comma-delimited list of LCRM statuses (administratively
imposed constraints) from which you wish to exempt this job (for example, 'CPUS>MAX,TOOLONG').
The only currently exemptable LCRM statuses are (note the uppercase):

 CPUS>MAX
 CPU&TIME
 JRESLIM
 NODE>MAX
 NRESLIM
 NTRESLIM
 QTOTLIM
 QTOTLIMU
 TOOLONG
 WMEML

You can omit the single quotes around statuslist if the list contains no special characters that need protection
from the shell. If you omit statuslist entirely, the job is exempt from EVERY status from which you have
permission to exempt jobs. See the status list (page 20) section above for an alphabetical dictionary that
explains every LCRM status, including the exemptable ones.

If you are not authorized to exempt jobs, your job will still be accepted by LCRM but the exempt
request will be ignored. If you have already submitted an LCRM job and then decide you want it exempted,
use PALTER as shown below.

(2) Discover the LCRM job ID by running PSTAT (use the -A option to see all jobs if you are not the
job's owner).

(3) Use the job ID (jobid) in this PALTER execute line to exempt the job:

palter -n jobid -exempt ['statuslist']
where statuslist meets the same conditions as in step (1) above.

(4) Similarly, to remove exemption from a previously exempted job, use this PALTER execute line:

palter -n jobid -noexempt ['statuslist']
where statuslist meets the same conditions as in (1) above. If you omit statuslist entirely here (use -noexempt
without arguments), then the job loses ALL of its previous exemptions (and is subject to all the usual
administrative constraints).

LCRM (DPCS) Reference Manual - 51

Forcing Job Priorities

Forcing a job's priority means assigning a specific value to its execution priority rather than letting the
usual LCRM algorithms calculate that priority and change it periodically (forced priorities remain constant
for the life of the job). Authorized users (page 53) can force the priority of a batch job by following these
steps:

(1) Submit the job as usual by running PSUB, but include the special -p option on the execute line as
well:

psub usualopts -p priority jobname

where priority is a value between 0.0 and 1.0 inclusive. Setting the priority to 0.0 will prevent LCRM from
scheduling the job. This has the same effect at running PHOLD, except that a 0.0-priority job's aging time
continues to advance.
If you are not authorized to force priorities jobs, your job will still be accepted by LCRM but the priority
request will be ignored. If you have already submitted an LCRM job and then decide you want its priority
forced, use PALTER as shown below.

(2) Discover the LCRM job ID by running PSTAT (use the -A option to see all jobs if you are not the
job's owner).

(3) Use the job ID (jobid) in this PALTER execute line to force the job's priority:

palter -n jobid -p priority

where priority is a value between 0.0 and 1.0 inclusive. Setting the priority to 0.0 will prevent LCRM from
scheduling the job. This has the same effect at running PHOLD, except that a 0.0-priority job's aging time
continues to advance.

(4) Similarly, to let LCRM once again compute the priority of a previously forced job, use this PALTER
execute line:

palter -n jobid -p float

Note that PALTER's -p option formerly set a job's "intrabank scheduling priority." This feature was
never used, and now is completely replaced by the current priority-forcing role for -p. The same applies
for PSUB's former -p option.

LCRM (DPCS) Reference Manual - 52

Granting Special-Job Permissions

To be authorized to use PALTER to expedite jobs, exempt jobs, or force job priorities, you must be
either

• an LCRM manager who is also an LCRM "expeditor," or

• a coordinator of a bank that is a parent of the bank from which the job is drawing its resources, and
who is also an LCRM "expeditor," or

• a user who owns the job and who has been given permission for a specfied number of days by
someone in the previous two authorized groups.

This section tells how to run the LRMMGR utility (formerly called PCSMGR) to grant special job-control
permissions to otherwise ordinary users.

First, execute LRMMGR (no options). Then, respond to the lrmmgr> prompt by typing an input line
of the form:

update user uname bank bname grantperm
where

uname is the login name of the user to whom you are granting special job-control permissions.

bname is the name of the bank with which the specified user will exercise their special
permissions.

LCRM (DPCS) Reference Manual - 53

grantperm is one or more of the job-control permissions that you can grant, specified singly or
in a blank-delimited list (if you want to grant several permissions on one input line).
The choices for grantperm are (one or more of the following):

expcount days grants the specified user (for the specified bank) the permission to
expedite their own jobs with PALTER for the specified number of
days, where days may be--
1 to 14 (an inclusive time range), or
0 (removes previous expedite permission), or
unlimited (a literal string, no time limit).

exemptcount days exemptstats statuslist

grants the specified user (for the specified bank) the permission to
exempt their own jobs with PALTER for the specified number of
days, where days may be--
1 to 14 (an inclusive time range), or
0 (removes previous exempt permission), or
unlimited (a literal string, no time limit).
Here statuslist is a single-quoted, comma-delimited list of LCRM
"statuses" (administratively imposed limits) for which the user can
exempt jobs, as explained in the subsection above (page 51) on how
to exempt jobs by running PALTER.

fixpriocount
days

grants the specified user (for the specified bank) the permission to
force the priority of their own jobs with PALTER for the specified
number of days, where days may be--
1 to 14 (an inclusive time range), or
0 (removes previous force-priority permission), or
unlimited (a literal string, no time limit).

For example, to use LRMMGR to grant to user jones3 for bank xyz the permission to exempt his jobs
from the QTOTLIMU restriction for the next 2 days and the permission to force job priorities forever, but
to simultaneously withdraw his previous permission to expedite his jobs, you would use this input line in
response to the lrmmgr> prompt:

update user jones3 bank xyz exemptcount 2 exemptstats QTOTLIMU
 fixpriocount unlimited expcount 0

You can reveal the currently granted permissions for any user and bank combination by using the LRMMGR
show command. For example,

 show user uname

reports "User is an LCRM expeditor" (if they are).

LCRM (DPCS) Reference Manual - 54

PHSTAT (Production Host Status)
Your batch jobs are constrained primarily by seldom-changed local resource limits (for example, on

total run time or maximum allowed nodes/job) that PLIM and LRMMGR report, or by similar stable
partition-wide limits (on jobs/bank, for instance) that BRLIM reports (see EZJOBCONTROL (URL:
http://www.llnl.gov/LCdocs/ezjob)). Sometimes you may want details about the status of specific nodes
on a specific target cluster (which SINFO reports for the LC clusters that run Linux/CHAOS; see the
SLURM Reference Manual (URL: http://www.llnl.gov/LCdocs/slurm)). But sometimes you need to know
if current values of dynamic LCRM attributes (such as the current scheduler choice or scheduling cycle),
changeable internal features of the "batch system" itself, are affecting your (planned or submitted) batch
job.

In that last case, PHSTAT ("production host status") is the LCRM utility to try. PHSTAT runs wherever
PSUB runs. If executed without options, PHSTAT reports a table of LCRM-managed hosts (one for OCF,
a different table for SCF) that reveals for each listed host:

• How LCRM now schedules that host (cluster backfill, memory backfill, multi-node backfill, or no
backfill),

• The current status of several LCRM scheduling daemons,

• Whether LRMMGR's NORUNNEW feature has been turned on to block the start of jobs on that
host,

• Whether timedout, staging, or terminating jobs are being scheduled,

• Total usable memory and percentage of memory already in use ("memory load"),

• The count of already committed nodes and total available nodes (but not available node names),

• Time (in seconds) since the local LCRM scheduler last ran, and

• (With the -t option) the current type and version of operating system and native batch system available
(instead of the memory and node information).

PHSTAT ends after displaying its report, from which you can optionally suppress the column headings
(with -H) for easier postprocessing.

LCRM (DPCS) Reference Manual - 55

http://www.llnl.gov/LCdocs/ezjob
http://www.llnl.gov/LCdocs/slurm

Fair Share Scheduling Algorithms
This section explains the concepts (such as shares, normalization, usage decay, and priority), the

formulas, and the parameter settings used to implement fair-share job scheduling at LC. Fair-share scheduling
replaced traditional time-allocation scheduling on LC open production machines in March, 1998, and then
it moved to the SCF production machines as well by June, 1998.

Definitions
Fair-share scheduling is one variety of political scheduling, that is, scheduling aimed at dividing compute

resources among users or groups of users (as opposed to dividing jobs among available machines (load
balancing) or grouping related tasks to run together (gang scheduling)). Fair-share scheduling as implemented
at LC under LCRM involves two key concepts that were unimportant for traditional time-allocation political
scheduling: shares and active users.

Shares

Shares are assigned to each user to represent in a unitless way that user's relative entitlement to system
resources (primarily CPU time, but eventually other resources such as memory too). A high number of
shares relative to other users represents a higher entitlement to compute, and hence a broader range of
circumstances when that user gets a high(er) scheduling priority. Conversely, users or banks (groups of
users) with similar numbers of shares (similar "share allocations") get to use similar amounts of compute
resources, regardless of the number of processes they may have executing. Traditional schedulers tend to
allow users with more processes to get a larger percentage of system resources than their priority alone
would allow.

Your shares influence the calculation of the scheduling priority for your jobs (see below (page 62)),
but they are not a measure of any specific resource (they are not equivalent to some number of CPU seconds,
for example). As a result, you never "use up your share" or "run out of time," as is possible under time-based
allocations. Your usage influences your job priority too, but it does not deplete your bank account.

Those who manage banks (primarily divisional computer coordinators) assign shares or alter share
assignments by running LRMMGR. For example, here LRMMGR's UPDATE option assigns 15 shares to
user aaa in bank bbb:

 update user aaa bank bbb share 15

Any user can run the PSHARE utility to report their currently assigned shares (and the priority those shares
help generate), as shown below in the priority section (page 62).

Also, LC shares are hierarchical, in the sense that banks have shares of their parent banks just as users
have shares of their direct banks. Compute entitlements are assigned and enforced in layers, just as time
allocations were in traditional scheduling. The normalization (page 58) section below gives a worked-out
example of this share hierarchy.

LCRM (DPCS) Reference Manual - 56

Active Users

LC fair-share scheduling "normalizes" both shares and usage among all and only "active users" (in the
same bank) in order to calculate priorities. So the definition of an active user is crucial to the numerical
result. An active user is one who:

• is currently logged in (even if NOT executing any processes), or

• has at least one batch job running now, or

• has at least one batch job ELIGIBLE to run (where "eligible" is a technical LCRM job status).

An active bank is a bank with at least one active user (who may really be a direct user of some subbank).

LCRM (DPCS) Reference Manual - 57

Shares and their Normalization
ROLE:

To allow their comparison when computing a user's priority, both the user's raw shares and their raw usage
are "normalized" to yield a number between 0 and 1. In a significant departure from traditional scheduling,
LC counts only currently active users (as defined in the previous section) when normalizing shares (and
usage). This means that merely by logging in or out, users can affect the normalized value of other users's
shares. LCRM recalculates normalized values once each minute (sometimes called the "heartbeat" rate).

At LC your normalized share value applies globally, over an entire LCRM partition (e.g., over all open
Linux clusters). Machines of different types (e.g., BG/L, UP, Linux "penguin" clusters) are in different
partitions, each with its own normalized share values.

FORMULA:
The LC normalization formula is

 A(raw.val) parent
 nor.val = ----------------- * (nor.val)
 SUM A(raw.val(i))

where

nor.val is the user's normalized value for shares (or usage).

raw.val is the user's raw value for shares (or usage).

A(raw.val) is a step function that filters out nonactive users by returning:

raw.val if the user is active, and

0 if the user is currently not active (so your normalized shares are 0
whenever you are not active).

raw.val(i) is the raw value for the ith user in the same bank in the same LCRM partition.

parent nor.val is the normalized value for the parent (bank) of this user or bank. This formula is
always applied recursively up the tree of banks until the root bank (whose normalized
value is 1) is reached.

EXAMPLE:
This simple example demonstrates how such recursive normalization of shares among only active users
works in practice. Suppose raw shares are allocated among banks and users as shown in this tree:

LCRM (DPCS) Reference Manual - 58

 ROOT (100)
 |

 | |
 BANK1 (82) BANK2 (18)
 | |
 -------------------... u4
 | |
 BANK3 (12) BANK4 (14)
 | |
 u1 u2 u3 (each user = 1 share)

Then if all and only the four users (u1 through u4) are active, their normalized shares will be

 u1: (1/2) * (12/26) * (82/100) = 0.19
 u2: (1/2) * (12/26) * (82/100) = 0.19
 u3: (1/1) * (14/26) * (82/100) = 0.44
 u4: (1/1) * (18/100) = 0.18

If user u1 logs out (becomes inactive), then user u2's normalized share doubles to 0.38 (assuming no other
changes). Normalized values are recalculated once each minute.

To see the actual hierarchy of banks relevant (for normalization) on any LC production machine (open
or secure), log on to that machine and type

pshare -T root
(this yields a very long report, which now shows the full names of every bank in the hierarchy).

LCRM (DPCS) Reference Manual - 59

Usage and Its Decay
For purposes of fair-share scheduling, the usage of each user is "aggregated" across all compute resources

and also across the user's historical profile.

Usage (in "aggregate resource units" or AGUs) is the weighted measure of compute resources consumed,
including:

• CPU time,

• Memory integral (currently weight set to 0), and

• Connect time (currently weight set to 0).

So for now, only CPU time actually contributes to fair-share usage. Taking this aggregate approach helps
prevent users with many active processes from consuming CPU resources at a higher rate than those users
with only a few active processes. (See how PSTAT reports AGUs for each LCRM job at the end of this
section.)

One goal of fair-share scheduling is to favor users who have relatively more shares with relatively
more compute resources. A second goal is to fairly distribute resources among those users who have equal
shares. This second goal is achieved by tracking usage, not just instantaneously but over time. Tracking
usage history allows the scheduler to allocate relatively more resources to a user who has done less
computational work in the recent past than to one who has done more work. This also promotes the
system-management goal of spreading work rather than crowding it whenever possible.

The length of time during which your past work affects your priority (and hence the scheduling of your
future jobs) is specified by a decay factor. At LC, that decay factor is expressed as a half-life of usage
history, an interval over which your usage would drop to half its value (if all other things were constant).
The specific formula for decaying your usage at LC is

 current U W
 decayed = --------- + ----------
 usage (dt/dR) (dt/2dR)
 2 2

where

U is past (previously decayed) usage.

W is new usage ("work") done during the interval dt.

dt is the time interval between usage samples. At LC, dt may vary depending on machine
load and machine type.
Current value of dt: 540 seconds

dR is the half-life decay period for usage. Experiments with this formula show that larger
dR values reduce errors and yield more stable priorities than do smaller dR values.
Current value of dR: 1 week

LCRM (DPCS) Reference Manual - 60

To calculate priorities, (decayed) usage and shares must be compared, and so both are normalized using
the approach explained in the previous section (page 58). The usage that matters to the priority calculation
is thus both a decayed historical aggregate and normalized over current active users. Consequently, it has
little direct connection to the raw reports of CPU minutes used that the utility LRMUSAGE delivers. Also,
LRMUSAGE always reports time used by whole day, and days have no role in calculating priorities for
fair-share scheduling.

EXPLICIT AGU REPORTS.
To help you assess how separate batch jobs that you run contribute to your priority-relevant usage (in
aggregate resource units or AGUs), PSTAT (optionally) reports the AGU value for each job. If you invoke
PSTAT's -f ("full report") option for a specific job (-n jid), the "resources used" field in the PSTAT output
reveals that job's current AGU value (e.g., 73373.00). This can yield helpful overt AGU comparisons if
you run many jobs with different allocations under different conditions.

LCRM (DPCS) Reference Manual - 61

Priority Calculation
FORMULA:

Different fair-share systems calculate job priorities in different ways. LC uses a priority formula that

• maps all priorities into the range from 0 to 1, inclusive,

• regards priority 0.5 as "neutral," indicating resource consumption neither ahead of nor behind what
a user's share entitles,

• calculates one priority per user throughout each LCRM "resource partition" (e.g., one for each
Compaq cluster and each IBM SP),

• relies only on differences, not on absolute values (of normalized shares and usage) to compute
priorities (see comments below).

The current LC fair-share priority formula is

 ((S - U) +1)R (-S/U)
 P = [(S * W) + -------------](1 - E) + [1 - 2]E
 2

where

P is the "political" priority (a decimal number between 0 and 1 inclusive). See the next
subsection for how this priority affects job scheduling.

S is normalized shares (also between 0 and 1, as explained in the normalization (page
58) section above). Sometimes also called "share priority."

U is normalized half-life decayed usage (also between 0 and 1, as explained in the usage
(page 60) section above). Sometimes also called "usage priority."

R is a configurable weighting factor for usage (sometimes called uweight).
Current value of R: 1

W is a configurable weighting factor for shares (sometimes called sweight).
Current value of W: 0

E is a configurable weighting factor for the exponential (right-hand) term in this equation
(sometimes called eweight).
Current value of E: 0

Thus currently the crucial part of the priority formula is the central fraction (S-U+1)/2, whose value is
more important than either normalized shares or normalized usage in isolation. (See CONSEQUENCES
below for the role of the exponential term, now set to 0 because of the value of E.)

EXAMPLE:
We can extend the share normalization example in the normalization (page 58) section to become an
example of priority calculation using this formula (simplified to (S-U+1)/2 given the current weights) if
we first stipulate some normalized decayed usage values for each user:

LCRM (DPCS) Reference Manual - 62

 Norm. Norm. Resulting
 User share usage priority

 u1 0.19 0.6 0.295
 u2 0.19 0.2 0.495
 u3 0.44 0.1 0.670
 u4 0.18 0.1 0.540

PSHARE REPORTS:
Using the -p option of the PSHARE utility reports actual current priorities, along with the normalized share
and usage values that gave rise to them. (Remember that the normalized values for NONactive users are
always defined as zero.) This PSHARE execute line

pshare -t yourbank -0 -p
is especially helpful because it reports priorities (-p) for all (-t) but only (-0) the currently active users in
your own bank. This is the most interesting and most relevant comparison set for your own priority when
planning jobs. PSHARE calculations (normalizations) are refreshed once each minute.

CONSEQUENCES:
One noteworthy consequence of this approach to calculating "political" priority is that changes in the set
of active users change the normalization, and hence can change, sometimes drastically, the priority values
assigned to other users. In the example above, recall that users u1 and u2 are in the same bank. If user u1
(who had much accumulated usage) logs out, then the priority for user u2 will be recalculated to become
0.29, a significant drop. This dependence of (normalization and hence) priority on the set of users currently
seeking resources is an major change from past practice, where time-allocation priorities were independent
of the active user set.

A second noteworthy consequence of this priority formula is the effect of the configurable weights R,
W, and E. With W and E set to 0 and R set to 1 (the curent defaults), the formula ignores the absolute value
of normalized shares and usage, and relies only on the difference in magnitude between them (S - U). If
everyone in a bank has about the same number of shares, the difference results are a plausible interpretation
of "fairly" sharing resources. If the variation among shares is great (e.g., 10-fold), however, then it becomes
possible for small shareholders to always have (relatively) low priorities, even though large shareholders
with exactly the same difference value (S - U) have already consumed large amounts of compute resources
equalling a large percentage of their entitlement. In these cases "fairness" may have several dimensions
that a purely difference formula overlooks.

This artificial emphasis on difference explains the presence of the right-hand, exponential term in the
formula, which was added in December, 2000. The term 1-2**(-S/U) takes account of the ratio of normalized
shares to normalized usage, not just their absolute difference. If exponential weight E were set to 1 instead
of 0 (the default), then the (S-U) difference would become unimportant. Small, heavily serviced banks
would more often have low priorties compared to larger, less seviced banks (in fact, the danger here is that
small bank priorities would stay so low that their jobs would never be scheduled).

SETTING WEIGHTS:
Beginning in December, 2000, the three weight factors in the priority formula above, namely

 R (uweight) usage weight
LCRM (DPCS) Reference Manual - 63

 W (sweight) share weight
 E (eweight) exponential weight

can be set (by LCRM managers or authorized bank coordinators) to different values for different LCRM
"resource partitions" (such as for each Compaq cluster and for each IBM SP machine). Authorized
LRMMGR users can set each weight independently by replying to the lrmmgr> prompt with an input line
of the form

 update partition pname uweight weightval
 sweight
 eweight

where pname is the target partition's name and weightval is a decimal number between 0 and 1 inclusive.
The previously available

 update global uweight
 sweight

LRMMGR commands are now obsolete and will yield only error messages if tried.

LCRM (DPCS) Reference Manual - 64

Role of Priority in Job Scheduling
In theory the fair-share priority calculated using the formula in the previous section plays a dual role

in managing jobs on LC production machines:

• Scheduling priority.
This helps determine which queued batch jobs should run next.

• Run priority.
This helps determine the rate of delivery of resources to login sessions and batch jobs already
underway. Since the current mechanism for controlling delivery rate is nice value, this role has little
significance now. Under a gang scheduler that controlled time sharing (as well as space sharing),
this could become more important in the future.

Just as in the past, the algorithm for which job is scheduled next is complex. Priority is a key factor
(reflecting as it does the influence of both shares and usage). But many other factors (such as a machine's
maximum number of simultaneous jobs and a user's maximum number of simultaneous jobs) also affect
the outcome. The underlying LCRM job-scheduling algorithm (page 39), described in another section,
remains as it was before the introduction of the fair-share approach. But now your fair-share priority serves
as your "political priority" pp[j] when the algorithm is invoked.

LCRM (DPCS) Reference Manual - 65

Graceful Priority-Service Transition

Warning Alternatives
This section explains extended features that allow LCRM to gracefully terminate executing jobs (and

passively or actively warn those jobs) on a running system slated

• for dedicated ("priority-service") usage, or

• to move from one kind of usage to another (e.g., from batch intensive to interactive intensive).

GENERAL APPROACH:
This approach involves a change to an LCRM administrative command and three liblrm library calls:

(1) The change to the existing "update host" command for the LRMMGR utility adds an optional
effective time at which a priority service level is to take effect. In the absence of a specified effective time,
this command reverts to its existing behavior, which is to place the host into the specified priority service
immediately.

(2) One of the new library calls, pcsgetresource (also called lrmgetresource), permits a program to
determine the time at which a priority service will become effective, if the job would be terminated or
checkpointed by the advent of the priority service. (Note: the original proposal concerning priority service
indicated that the pcsgettime call would be modified for this purpose. But the addition of a number of
parameters concerning memory usage has motivated the introduction of the completely new call,
pcsgetresource. This avoids having an impact on programs that currently use the pcsgettime call, and it
also expresses the functionality of the call more clearly.)

(3) The two new library functions, pcssig_register (also called lrmsig_register) and pcswarn (also called
lrmwarn), permit a program to register with LCRM to be sent a signal when LCRM is instructed to set a
priority service that would cause the job to be checkpointed or terminated. Code developers should use
pcssig_register if they want to trap the signal. They should use pcswarn if they wish to poll a variable that
indicates whether the priority service that would affect the job has been declared.

AVAILABILITY:
The warning strategy outlined above and described in detail below was implemented first in 1998.

(1) Starting in 2004, LCRM allowed signal registration (with lrmsig_register and lrmwarn) from any
process of any job managed by either LoadLeveler (on IBM SPs) or SLURM (on Linux/CHAOS clusters).
RMS-managed jobs (on Compaq machines) lack signal registration support.

(2) But starting with version 6.12 in spring, 2005, LCRM now only allows signal-requesting library
calls from a batch job's master node (or an interactive job's login node). Such library calls attempted from
other nodes now yield an error message.

(3) On BlueGene/L only, this signal registration fails for interactive parallel jobs but still works for
batch parallel jobs (those managed by LCRM).

(4) Starting in 2007, LC began replacing LCRM with Moab as its job scheduler (made possible by
replacing LoadLeveler with SLURM as the local resource manager). The graceful-termination library calls
introduced above depend on liblrm, which is available only on LCRM-scheduled machines. On

LCRM (DPCS) Reference Manual - 66

Moab-scheduled machines, you can still use the same calls with emulation library liblrmemu, or you can
switch to the portable time-remaining library libyogrt, or you can try native SLURM or Moab routines
(whose reliablity varies with context). For a full comparative analysis of these graceful-termination
alternatives to liblrm, see "LIBLRM (Remaining Time) Alternatives for Moab" in the Moab at LC (URL:
http://www.llnl.gov/LCdocs/moab/index.jsp?show=s5) user manual.

LCRM (DPCS) Reference Manual - 67

http://www.llnl.gov/LCdocs/moab/index.jsp?show=s5

Library Calls
This section describes the three library calls (functions) that implement graceful priority-service

transitions (see the availability warning at the end of the previous subsection (page 66)).

As a programmer, you should use either pcssig_register/IPCSSIG_REGISTER or pcswarn/IPCSWARN,
but not both. You can also invoke these with the names lrmsig_register or lrmwarn, as illustrated below.
And under those names you can even use them on Moab-scheduled LC clusters wtih the library liblrmemu
instead of with liblrm.

If pcswarn/IPCSWARN is used, you do not need to supply a signal handler, but rather should poll on
the *warn/WARN flag and *stoptime/STOPTIME variable to determine the code's proper action.

If pcssig_register/IPCSSIG_REGISTER is used, you should register the appropriate signal handler to
trap the signal and should call pcsgetresource/IPCSGETRESOURCE (also called lrmgetresource) directly
to determine the reason the signal was sent.

PCSGETRESOURCE (LRMGETRESOURCE)

NAME:

 pcsgetresource (or lrmgetresource, called from C)

 IPCSGETRESOURCE (called from FORTRAN)

SYNOPSIS:

#include <libpcs.h>
#include <pcserrno.h>

int pcsgetresource(time_t *total, time_t *used, time_t
*maxtime, time_t *avail, time_t *stoptime, long *arus, long
*maxarus, double *memint, double *maxmemint, int *pcsstatus);

INTEGER IERR, TOTAL, USED, MAXTIME, AVAIL, STOPTIME
IERR = IPCSGETRESOURCE(TOTAL, USED, MAXTIME, AVAIL,
STOPTIME,ARUS,MAXARUS,MEMINT,MAXMEMINT)

pcsgetresource() and IPCSGETRESOURCE return several resource-related values in buffers provided
by the caller. All time values are in seconds. If your program is designed to terminate gracefully rather
than being shutdown by the system, the following values should be examined: stoptime (STOPTIME),
avail(AVAIL), and the difference between arus(ARUS) and maxarus(MAXARUS). The program should
also take into consideration the time and resources required to archive results, if appropriate.

*total (TOTAL)

contains the total CPU seconds used by the session.

*used (USED) contains the CPU seconds used since the session last began execution. (This will
differ from *total only in batch jobs that have been checkpointed).

LCRM (DPCS) Reference Manual - 68

*maxtime (MAXTIME)

contains the maximum amount of CPU seconds per task permitted to the session. If
maxtime is unlimited, -1 will be returned for this parameter. (Except on the IBM SP
machines, there is only one task per job.)

*avail (AVAIL)

contains the amount of remaining CPU seconds available to the session. The remaining
CPU time available to a session (*avail or AVAIL) is the instantaneous value only.
Some or all of the time reported as available may be used by other users drawing from
the same bank subtree.

*stoptime (STOPTIME)

contains 0 if no priority service has been declared or if the job is protected by a
declared priority service. Otherwise it contains the local time (seconds since midnight,
January 1, 1970 UTS) at which the job will be checkpointed or terminated. The time
function reports the current time for comparison.

*arus (ARUS) is the quantity of "Aggregate Resource Units" used by the session (Note: ARU is an
as-yet unspecified quantity that will be used to unify memory and cpu charging when
memory charging is implemented.)

*maxarus (MAXARUS)

is the total amount of ARUs available to the session. If maxarus is unlimited, -1 will
be returned for this parameter.

*memint (MEMINT)

is the memory integral (kilobyte seconds) used by the session.

*maxmemint (MAXMEMINT)

is the total memory integral (kilobyte seconds) available to the session. If maxmemint
is unlimited, -1 will be returned for this parameter.

ERROR CONDITIONS:
If pcsgetresource fails it returns -1 and *pcsstatus (page 72) contains a value that indicates the error
condition. Otherwise, it returns 0 and *pcsstatus contains 0. If IPCSGETRESOURCE fails, IERR is set to
a nonzero value that indicates the error condition. Otherwise, IERR is set to 0.

LCRM (DPCS) Reference Manual - 69

PCSSIG_REGISTER (LRMSIG_REGISTER)

NAME:

 pcssig_register (or lrmsig_register, called from C)

 IPCSSIG_REGISTER (called from FORTRAN)

SYNOPSIS:

#include <libpcs.h>
#include <pcserrno.h>

int pcssig_register(int signal, time_t mintime, int
*pcs_status);

INTEGER IERR, SIGNAL, MINTIME
IERR = IPCSSIG_REGISTER(SIGNAL, MINTIME)

pcssig_register() and IPCSSIG_REGISTER register the calling process as being the recipient of the
given signal (SIGNAL) on detection of a "nearing time limit" or "shutdown pending" event for the session
(or job) of which the calling process is a member. You can also use the lrmsig_register version with the
emulation library liblrmemu on Moab-scheduled LC clusters. See Moab at LC (URL:
http://www.llnl.gov/LCdocs/moab) for details.

A "nearing time limit" event occurs when the remaining CPU time available to a session due to a LCRM
imposed limit becomes less than the specified mintime (MINTIME), which is expressed in seconds. A
"shutdown pending" event occurs when an administrator specifies to LCRM that the host on which a session
is executing is to be placed into priority service at the present or a future time and the session or job will
be checkpointed or terminated at the effective priority service time as a result of not being in the priority
protected set of sessions. (A session is priority protected if it is drawing its allocated resources from a
priority protected bank. A bank is priority protected if it is a sub-bank of the priority bank specified by the
administrator when the priority service level was declared.) The program should also take into consideration
the time and resources required to archive results, if appropriate.

If either condition is true at the time of the call to pcssig_register() or IPCSSIG_REGISTER, the signal
will be sent immediately. The signal is also sent to a registered process when either condition becomes
true. When a signal is sent, the registration is deleted. If a process wishes to receive additional signals, it
must call pcssig_register() or IPCSSIG_REGISTER again.

If more than one process in a session calls either pcssig_register() or IPCSSIG_REGISTER, then only
the last process that makes either call will receive a signal from LCRM. No process will be notified that
it will not receive the signal if it is preempted by another process. If, from among all the processes of a
session, the process that has last called pcssig_register() or IPCSSIG_REGISTER terminates before the
signal is sent, then no signal is sent to any process of the session unless another process of the session
subsequently calls either routine.

The specified signal can not be SIGKILL or SIGSTOP (or any other signal that cannot be caught).

LCRM (DPCS) Reference Manual - 70

http://www.llnl.gov/LCdocs/moab

It is the responsibility of the caller to register a signal handler with the operating system to trap the
signal when it is sent.

ERROR CONDITIONS:
If pcssig_register fails it returns -1 and *pcsstatus (page 72) contains a value that indicates the error
condition. Otherwise, it returns 0 and *pcsstatus contains 0. If IPCSSIG_REGISTER fails, IERR is set to
a nonzero value that indicates the error condition. Otherwise, IERR is set to 0.

PCSWARN (LRMWARN)

NAME:

 pcswarn (or lrmwarn, called from C)

 IPCSWARN (called from FORTRAN)

SYNOPSIS:

#include <libpcs.h>
#include <pcserrno.h>

int pcswarn(int signal, time_t mintime, int *warn, time_t
*stoptime, int *pcsstatus);

INTEGER IERR, SIGNAL, MINTIME, WARN, STOPTIME
IERR = IPCSWARN(SIGNAL, MINTIME, WARN, STOPTIME)

pcswarn() and IPCSWARN store the value 0 into *warn (WARN) and *stoptime (STOPTIME). The
functions then register an internal signal handler with the operating system to trap the specified signal
(SIGNAL). Finally, they call pcssig_register() to register the signal with LCRM. You can also use the
lrmwarn version with the emulation library liblrmemu on Moab-scheduled LC clusters. See Moab at LC
(URL: http://www.llnl.gov/LCdocs/moab) for details.

When the signal is sent, the internal signal handler calls pcsgetresource to get the value to store into
*stoptime (STOPTIME) and then sets *warn (WARN) to 1 if and only if the job's available time is less
than or equal to mintime (MINTIME), which is expressed in units of seconds. The program should also
take into consideration the time and resources required to archive results, if appropriate.

ERROR CONDITIONS:
If pcswarn fails it returns -1 and *pcsstatus (page 72) contains a value that indicates the error condition.
Otherwise, it returns 0 and *pcsstatus contains 0. If IPCSWARN fails, IERR is set to a nonzero value that
indicates the error condition. Otherwise, IERR is set to 0.

LCRM (DPCS) Reference Manual - 71

http://www.llnl.gov/LCdocs/moab

Error Conditions (*pcsstatus)

Possible errors from the three foregoing library functions appear in the list below. Failures cause
*pcsstatus to contain a value that indicates the error condition. The status value (or return value from
FORTRAN extensions) is identified in the file pcserrno.h, which is located in /usr/local/include (and the
value also appears in parenthesis in this list).

PCS_EINVAL (5001)

Invalid parameter value was found.

PCS_ENOHOST (5050)

The caller is executing on a host that is not being managed by LCRM.

PCS_ENOSID (5018)

LCRM did not find the caller's session.

PCS_ENOTOPEN (5031)

Can't open communication with LCRM daemon, not connected.

PCS_EREADERR (5037)

Error reading from LCRM daemon.

PCS_ERETRY (5011)

Action could not be completed. Retry.

PCS_ESELERR (5036)

Select error on LCRM daemon return socket.

PCS_EUIDRANGE (5063)

The user to be affected has a UID that is not in the range of UIDs being managed by
LCRM.

PCS_EWRITEERR (5035)

Error writing to LCRM daemon.

LCRM (DPCS) Reference Manual - 72

Examples

Poll-for-Warning Examples

1. POLLING IPCSWARN (FORTRAN).
Assume a FORTRAN-coded program with a major cycle that takes no more than 50 CPU minutes to
complete each interation and that the program requires 5 CPU minutes to gracefully terminate. To register
this process to receive a signal with sufficient time for gracefully termination prior to an LCRM initiated
termination or checkpoint, the code developer would add the following lines into the code before entering
the major cycle:

c Register with LCRM to give a warning if the
c available CPU time becomes less
c than 1 hour or if a priority service that would
c cause the job to terminate becomes
c effective.

 IERR = IPCSWARN(SIGNAL, 60*60, WARN, STOPTIME)
In this example, the program would then enter its major cycle. At the beginning of the cycle, the code
should check the values of WARN and STOPTIME. If both WARN and STOPTIME are 0, then the code
can continue its major cycle with relatively strong assurance that it can be completed. If WARN is not 0,
the code should enter its graceful termination code, after which it can either terminate or wait to be
checkpointed. If WARN is 0, but STOPTIME is not, the programmer should determine the appropriate
action from the wall clock time remaining to the job.

2. POLLING PCSWARN (C).
A sample C program using the pcswarn function (called here as lrmwarn) is shown below. This sample
program does the same as the one in the next section (page 78), except it is using the pcswarn function
instead of the pcssig_register function. This program waits a designated amount of time before terminating
(default is 60 CPU seconds).

WARNING: You must link in the LCRM library, -lpcs (or -llrm, /usr/local/lib/libpcs.a), when compiling
this sample program.

#include <signal.h>

#include <liblrm.h>

#include <lrmerrno.h>

#include <time.h>

/*

 * cc -o lrmwarnexample lrmwarnexample.c -L/dpcs/lib -llrm -I/dpcs/include

 */

void display_resource_info(void)

LCRM (DPCS) Reference Manual - 73

{

 long total = 0;

 long used = 0;

 long maxtime = 0;

 long avail = 0;

 long stoptime = 0;

 long arus = 0;

 long maxarus = 0;

 long memint = 0;

 long maxmemint = 0;

 int lrmstatus = 0;

 int rc = 0;

 char str[64];

 rc = lrmgetresource(&total, &used, &maxtime, &avail, &stoptime, &arus,

 &maxarus, &memint, &maxmemint, &lrmstatus);

 if (rc == 0) {

 printf("\tTotal CPU seconds: %ld\n", total);

 printf("\tConsecutive CPU secs: %ld\n", used);

 sprintf(str, "%ld", maxtime);

 printf("\tMax CPU secs limit: %s\n",

 maxtime == -1 ? "unlimited" : str);

 sprintf(str, "%ld", avail);

 printf("\tRemaining CPU secs: %s\n",

 avail == -1 ? "unlimited" : str);

 printf("\tStoptime %s",

 stoptime <= 0 ? "N/A\n" : ctime(&stoptime));

 printf("\tAggregate Resrc Units: %ld\n", arus);

 sprintf(str, "%ld", maxarus);

 printf("\tARU limit: %s\n",

LCRM (DPCS) Reference Manual - 74

 maxarus == -1 ? "unlimited" : str);

 printf("\tMemory integral: %ld MB-hours\n", memint);

 sprintf(str, "%ld", maxmemint);

 printf("\tMemory integral limit: %s MB-hours\n\n",

 maxmemint == -1 ? "unlimited" : str);

 } else {

 printf("lrmgetresource() Failed!\n");

 printf(" return code = [%d] lrmstatus = [%d]\n",

 rc, lrmstatus);

 }

 return;

}

static void burn_cpu(void)

{

 double l = 456.789;

 int i;

 for (i = 0; i < 100000000; i++) {

 l *= 123.456 * i;

 l /= 123.456 * i;

 }

}

int main(int argc, char *argv[])

{

 long mintime;

 int warning = 0; /* NOTE: this will be set by lrmwarn() */

 long stoptime = 0; /* NOTE: this will be set by lrmwarn() */

 int lrmstatus = 0;

 time_t Now;

LCRM (DPCS) Reference Manual - 75

 display_resource_info();

 if (argc == 2)

 mintime = atoi(argv[1]);

 else

 mintime = 60;

 if (lrmwarn(SIGINT, mintime, &warning, &stoptime, &lrmstatus)) {

 printf("lrmwarn() failed to register SIGINT with LCRM\n");

 printf(" lrmstatus = [%d]\n", lrmstatus);

 exit(1);

 } else {

 printf("Requested a warning when %ld CPU secs remain\n",

 mintime);

 }

 /* burn some cpu cycles while waiting for the warning */

 while (!warning && !stoptime) {

 time(&Now);

 printf("waiting for the warning to be received... %s\n",

 ctime(&Now));

 burn_cpu();

 }

 printf("warning = [%d] stoptime = [%ld]\n", warning, stoptime);

 if (stoptime)

 printf("Stop time = %s\n", ctime(&stoptime));

 else

 printf("Stop time = normally\n\n");

 display_resource_info();

LCRM (DPCS) Reference Manual - 76

 return(0);

}

LCRM (DPCS) Reference Manual - 77

Signal-Catching Examples

1. BRIEF SIGNAL CHECK (C).
Assume a C-coded program with a major cycle that takes no more than 50 CPU minutes to complete each
interation and that the program requires 5 CPU minutes to gracefully terminate. Also, assume that the
programmer does not wish to simply poll, but requires immediate notification when the signal is sent. The
code developer would place the following lines into the code before entering the major cycle:

static void mypcssig_handler(int sig)
{
 time_t total, used, maxtime, avail, stoptime;
 int pcsstatus;
 long arus, maxarus;
 double memint, maxmemint;

 if (!pcsgetresource (&total, &used, &maxtime, &avail,
&stoptime,
 &arus, &maxarus, &memint,
&maxmemint,
 &pcsstatus))

 {
 /* process the LCRM error */
 } else
 {
 /* Do what ever is necessary here to handle the
receipt of the signal */
 signal(sig,mypcssig_handler);
 /* might want to do a longjmp here */
 }

 return;
}

...

int main(int argc, char **argv)
{
 ...
 signal(SIGALRM, mypcssig_handler);
 if (!pcssig_register(SIGALRM, mintime, &pcs_status)) {
 /* Handle pcs error */
 }

 ...

 return(0);
}

2. ELABORATE SIGNAL CHECK (C).
A more complex sample C program using the lrmsig_register and lrmgetresource ("new" named) functions
is shown below. This program waits a designated amount of time before terminating (default is 60 CPU
seconds).

WARNING: You must link in the LCRM library, -lpcs (or -llrm, /usr/local/lib/libpcs.a), when compiling
this sample program.

LCRM (DPCS) Reference Manual - 78

#include <signal.h>

#include <liblrm.h>

#include <lrmerrno.h>

#include <time.h>

/*

 * cc -o sigregexample sigregexample.c -L/dpcs/lib -llrm -I/dpcs/include

 */

static int interrupted;

void display_resource_info(void)

{

 long total = 0;

 long used = 0;

 long maxtime = 0;

 long avail = 0;

 long stoptime = 0;

 long arus = 0;

 long maxarus = 0;

 long memint = 0;

 long maxmemint = 0;

 int lrmstatus = 0;

 int rc = 0;

 char str[64];

 rc = lrmgetresource(&total, &used, &maxtime, &avail, &stoptime, &arus,

 &maxarus, &memint, &maxmemint, &lrmstatus);

 if (rc == 0) {

 printf("\tTotal CPU seconds: %ld\n", total);

 printf("\tConsecutive CPU secs: %ld\n", used);

 sprintf(str, "%ld", maxtime);
LCRM (DPCS) Reference Manual - 79

 printf("\tMax CPU secs limit: %s\n",

 maxtime == -1 ? "unlimited" : str);

 sprintf(str, "%ld", avail);

 printf("\tRemaining CPU secs: %s\n",

 avail == -1 ? "unlimited" : str);

 printf("\tStoptime %s",

 stoptime <= 0 ? "N/A\n" : ctime(&stoptime));

 printf("\tAggregate Resrc Units: %ld\n", arus);

 sprintf(str, "%ld", maxarus);

 printf("\tARU limit: %s\n",

 maxarus == -1 ? "unlimited" : str);

 printf("\tMemory integral: %ld MB-hours\n", memint);

 sprintf(str, "%ld", maxmemint);

 printf("\tMemory integral limit: %s MB-hours\n\n",

 maxmemint == -1 ? "unlimited" : str);

 } else {

 printf("lrmgetresource() Failed!\n");

 printf(" return code = [%d] lrmstatus = [%d]\n",

 rc, lrmstatus);

 }

 return;

}

void sigcatch(int sig)

{

 printf("Signal %d received\n", sig);

 interrupted = 1;

 return;

}

LCRM (DPCS) Reference Manual - 80

static void burn_cpu(void)

{

 double l = 456.789;

 int i;

 for (i = 0; i < 100000000; i++) {

 l *= 123.456 * i;

 l /= 123.456 * i;

 }

}

int main(int argc, char *argv[])

{

 long mintime;

 int lrmstatus = 0;

 time_t Now;

 display_resource_info();

 if (argc == 2)

 mintime = atoi(argv[1]);

 else

 mintime = 60;

 signal(SIGTSTP, sigcatch);

 if (lrmsig_register(SIGTSTP, mintime, &lrmstatus)) {

 printf("lrmsig_register() failed to register for signal\n");

 printf(" lrmstatus = [%d]\n", lrmstatus);

 exit(1);

 } else {

 printf("Requested a signal when %ld CPU secs remain\n",

 mintime);

LCRM (DPCS) Reference Manual - 81

 }

 /* burn some cpu cycles while waiting for the signal */

 interrupted = 0;

 while (!interrupted) {

 time(&Now);

 printf("waiting for the signal to be received... %s\n",

 ctime(&Now));

 burn_cpu();

 }

 display_resource_info();

 return(0);

}

LCRM (DPCS) Reference Manual - 82

Administrative Examples

1. USING LRMMGR.
To place machine X into an urgent priority service for the benefit of bank "eng" at 5:00 p.m. today, an
administrator would issue the following command to LRMMGR:

update host X psl urgent psbank eng psefftime 17:00
To place machine X into an critical priority service immediately:

update host X psl critical psbank eng
After a machine has been placed into priority service, the service can be removed at a future time. For
instance, to remove machine X (which is in priority service) from priority service at 6:00 a.m., an
administrator would issue the following command to LRMMGR:

update host X psl normal psefftime 06:00

LCRM (DPCS) Reference Manual - 83

Checkpointing

Checkpointing Overview
Checkpointing means saving the state of a running program so that it can continue execution (can

restart) later if it is prematurely stopped. There are two primary ways to perform checkpointing, program
directed and automatic. In program-directed checkpointing the program saves sufficient state information
to continue execution. In automatic checkpointing the operating system or libraries save the program's
state. Automatic checkpointing is unable to distinguish between critical state information and temporary
storage, which typically results in much more information being recorded than is useful. Automatic
checkpointing also has a limited ability to fully restore a program's state. Process IDs, pipes, and data-file
state can not always be restored. Programs dependent upon such state information may be unable to utilize
automatic checkpointing.

Livermore Computing once offered automatic checkpointing on Cray J90 computers utilizing the
UNICOS operating system, without program modification. Automatic checkpointing is now also offered
on Compaq (formerly DEC) computers, but only by invoking the Condor libraries. Since operating system
support is not offered by the underlying Tru64 UNIX, this mechanism has more restrictions than the former
Cray version. The Condor approach also requires the program to be loaded with the appropriate options
and libraries. Program-generated checkpoint files are applicable on virtually any computer system, but do
require program modification.

Condor Automatic Checkpoint
Condor is a job-scheduling system developed by the University of Wisconsin at Madison that includes

a checkpoint mechanism. This checkpoint mechanism is available independently of the job scheduler and
has been incorporated into LSF (Load Sharing Facility), GRD (Global Resource Director), Codine, and is
planned for our own LCRM (Livermore Computing Resource Manager). As one might expect, the checkpoint
library utilizes some very unusual constructs:

• A library routine is started prior to the initiation of your "main" routine.

• Signal handlers are established to save the program's state.

• Open, read, write, and close system calls are replaced with Condor versions.

Significant limitiations exist for the type of program that can be built in such a fashion and produce a
usable checkpoint image. To build your program in the appropriate fashion, precede the usual execute
line(s) for compiling or loading with the string "condor_compile". For example

 cc -o test test.c
would be changed to

 condor_compile cc -o test test.c
When initiating your program, you would add the option

 -_condor_ckpt filename

LCRM (DPCS) Reference Manual - 84

to identify the location of a file into which the checkpoint image should be written. When restarting your
program, add the option

 -_condor_restart filename
to identify the location from which the checkpoint image should be read. For example

 NORMAL EXECUTION: my_proc -xyz
 CHECKPOINT EXECUTION: my_proc -_condor_ckpt my_checkpoint -xyz
 CHECKPOINT RESTART: my_proc -_condor_restart my_checkpoint

These Condor options are not passed to your program.

Program checkpoint images will be written upon receipt of a SIGUSR2 or SIGTSTP signal. The
SIGUSR2 signal will generate a checkpoint image and continue the program's execution. The SIGTSTP
signal will generate a checkpoint image and terminate the program. The program PERIOD_CKPT will
automatically generate periodic SIGUSR2 signals to maintain recent checkpoint images. For more
information consult the checkpointing MAN page on any of the Compaq clusters of computers (OCF or
SCF).

Program-Generated Checkpoint
If you utilize program-generated checkpoints, Livermore Computing advises that they be generated

upon receipt of a signal or at periodic intervals. Generating a checkpoint upon receipt of a signal permits
the system scheduler to gracefully terminate a job prior to scheduled system down times or if resources
need to be released for other purposes. For compatability with Condor, the prefered signals and their
meanings are:
SIGUSR2: Generate a checkpoint image and continue job execution
SIGTSTP: Generate a checkpoint file and terminate the job with an exit code 159.

A sample C program to perform checkpointing is shown below.

#include <errno.h>

#include <signal.h>

#include <stdio.h>

#define PROB_SIZE 1000

static int array[PROB_SIZE];

void sig_check(int signal_value);

void checkpt_restore(char *checkpoint_filename);

main(int argc, char *argv[]) {

 int i, j;

LCRM (DPCS) Reference Manual - 85

 /* Configure for checkpoint generation on signal */

 signal(SIGTSTP, sig_check);

 signal(SIGUSR2, sig_check);

 if ((argc >2) && (strcmp(argv[1], "-restart")== 0)) {

 /* Restore state */

 checkpt_restore(argv[2]);

 } else {

 /* Initialization */

 for (i=0; i<PROB_SIZE; i++) {

 array[i] = i;

 }

 }

 /* Do our work */

 j = 0;

 for (i=0; i<PROB_SIZE; i++) {

 j += array[i];

 }

 printf("Array sum = %d\n", j);

 exit(0);

} /* main */

/* Generate a checkpoint image */

void sig_check(int signal_value) {

 char checkpoint_filename[30];

 FILE *checkpoint_file;

 static int iteration = 0;

 int err;

 sprintf(checkpoint_filename, "checkpoint.%d.%d", getpid(), iteration++);

LCRM (DPCS) Reference Manual - 86

 checkpoint_file = fopen(checkpoint_filename, "w");

 if (checkpoint_file == NULL) {

 fprintf(stderr, "Error %d opening file %s\n", errno, checkpoint_filename);

 return;

 }

 err = fwrite(array, sizeof(int), PROB_SIZE, checkpoint_file);

 if (err != PROB_SIZE) {

 fprintf(stderr, "Error %d writing file %s\n", errno, checkpoint_filename);

 }

 fclose(checkpoint_file);

 if (signal_value == SIGTSTP) exit(159);

 signal(SIGUSR2, sig_check); /* re-establish signal handler */

} /* sig_check */

/* Restore a checkpoint image */

void checkpt_restore(char *checkpoint_filename) {

 FILE *checkpoint_file;

 static int interation = 0;

 int err;

 checkpoint_file = fopen(checkpoint_filename, "r");

 if (checkpoint_file == NULL) {

 fprintf(stderr, "Error %d opening file %s\n", errno, checkpoint_filename);

 exit(1);

 }

 err = fread(array, sizeof(int), PROB_SIZE, checkpoint_file);

 if (err != PROB_SIZE) {

 fprintf(stderr, "Error %d reading file %s\n", errno, checkpoint_filename);

 exit(1);

LCRM (DPCS) Reference Manual - 87

 }

 fclose(checkpoint_file);

} /* checkpt_restore */

LCRM (DPCS) Reference Manual - 88

An LCRM Resubmitting Script
To take full advantage of checkpointing, you may want LCRM to automatically restart a program upon

system failure. One way to do this is for an LCRM script to submit a restart job that will not begin execution
until the original program terminates. This restart job can submit another restart job and so forth to insure
eventual completion even should multiple system failures occur as shown in the example below.

#! /bin/csh

#

#PSUB -nr # IMPORTANT, this job should not be re-run !

#PSUB -mb # mail at the beginning of run.

#PSUB -tM 60:00 # time limit of 60 hours.

#PSUB -r testcode # request name.

#

This script is resubmitted to LCRM as a new job to be dependent

upon the completion of this job. The job id is saved so that if this

job is terminated by anything other than a checkpoint, the dependent

can be deleted.

#

The first action should be to set this job up to automatically

run the job again if the job is checkpointed. Be SURE to use the

-nr option. This will keep the job from being re-run if the machine

should re-boot or the batch system is re-initialized.

#

(This example assumes execution in the home directory.)

#

set jobid = `psub -nr -d $PCS_REQID this_scriptname | cut -d' ' -f2`

#

Error recovery if job did not submit properly.

#

If ($status != 0) then

LCRM (DPCS) Reference Manual - 89

mailx joe_user -s job submission failure << EOF

re-submission of LCRM job failed from job $PCS_REQID.

EOF

endif

###

#

For testing purposes, the condor method of checkpointing a job was used.

The executable was made using the following line.

#

condor_compile cc -o mytest mytest.c

#

##

#

Next a checkpoint file name is selected.

#

set ckpt_filename = "mytest.ckpt"

#

If the checkpoint file exists, this is a restart, otherwise an

initialization.

if (-e $ckpt_filename)

 ./mytest -_condor_restart $ckpt_filename

else

 ./mytest -_condor_ckpt $ckpt_filename

endif

#
LCRM (DPCS) Reference Manual - 90

If this point is reached, save the status.

#

set save_exit_value = $status

##

#

NOTE: IF writing your own checkpoint code, make sure that your code

terminates with an exit value that truly represents its status (try

to use an uncommon exit status value to avoid exit status value conflict

with existing codes).

If you are using the condor checkpointing facility, it has an exit

status value of 159 which is returned after the code is sent a SIGTSTP

and the code has checkpointed successfully.

#

##

Set the value of what a successfull checkpoint exit status should be.

#

set checkpoint_value = 159

##

#

Clean up of perpetual job.

#

If this point is reached, the job has NOT been removed by PRM

nor deleted by the system. The job has reached completion, either by

#

completing successfully, or

terminating prematurely due to error, or
LCRM (DPCS) Reference Manual - 91

terminating due to a checkpoint.

#

##

#

If the job was not checkpointed, it should be deleted.

#

if ($save_exit_value != $checkpoint_value) then

 prm -n $jobid -f

endif

LCRM (DPCS) Reference Manual - 92

Checkpointing with SLURM and POE
On LC AIX machines that also use SLURM (instead of IBM's LoadLeveler) to manage job resources,

users can checkpoint any job that invokes POE. This includes jobs under the control of LCRM, if the user
takes appropriate enabling steps before starting the job.

NAME CONTROL:
Two environment variables (on the execution machine) specify how the checkpoint files will be named
and where they will reside (if you don't want the defaults, then set these variables in your job script before
you invoke POE).

MP_CKPTDIR specifies the full (absolute) pathname of the directory to receive the checkpoint files.
The default is the current working directory of the job that is checkpointed.

MP_CKPTFILE specifies a base name for each checkpoint file, to which SLURM appends the task
ID and an integer to differentiate each checkpoint file from its predecessor (e.g.,
bigjob.64.2),
or
specifies the absolute pathname for each checkpoint file (e.g., /nfs/tmp0/smith/bigjob),
to which SLURM appends the task ID and identifying integer as above. In this case
only, SLURM ignores the value of MP_CKPTDIR.
If MP_CKPTFILE is null, the default base name becomes poe.ckpt.num, where num
is an integer that differentiates each checkpoint file from its predecessor.

CHECKPOINT TOGGLE:
POE with SLURM keeps checkpoint files for a job only if the environment variable CHECKPOINT is set
to YES (the default is NO) before the job first invokes POE. For LCRM-managed jobs you can achieve
this in either of two ways--
(A) Set CHECKPOINT to YES on the machine where you will submit the job and then run PSUB with
the -x option. This passes all of your submittal-machine environment variable settings to the execution
machine when LCRM actually starts the job. For details, see the "At Job Submittal" section (URL:
http://www.llnl.gov/LCdocs/ev/index.jsp?show=s3.4.2.1) of LC's Environment Variables user guide.
(B) Set CHECKPOINT to YES within your job's own script but before the first invocation of POE. There
may be script nesting situations (or other AIX complexities) where this method fails, however.

REQUESTING A CHECKPOINT:
After completing all of the preliminaries described above, your job can then initiate checkpoints. You can
use SQUEUE to discover your SLURM job ID (or evaluate environment variable SLURM_JOBID after
the job starts). You can then execute SCONTROL to request a checkpoint (most SCONTROL options
require system administrator status, but checkpointing does not). The specific command (to include in your
job's script) is

scontrol checkpoint action jobid[.stepid]

LCRM (DPCS) Reference Manual - 93

http://www.llnl.gov/LCdocs/ev/index.jsp?show=s3.4.2.1

where

action specifies what to do after the requested checkpoint occurs, where the two most useful
alternatives are

create requests a checkpoint and continues the job(step) after it occurs, or

vacate requests a checkpoint and terminates the job(step) after it occurs.

jobid[.stepid] specifies the range for the checkpointing activity, which can be all existing steps for
a specified jobid alone (e.g., 4812), or the individual job step indicated by a jobid.stepid
combination (e.g., 4812.4).

LCRM (DPCS) Reference Manual - 94

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor the University of California nor any of their

employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the
accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or

represents that its use would not infringe privately owned rights. Reference herein to any specific commercial
products, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily
constitute or imply its endorsement, recommendation, or favoring by the United States Government or the
University of California. The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government thereof, and shall not be used for advertising or product

endorsement purposes.
(C) Copyright 2007 The Regents of the University of California. All rights reserved.

LCRM (DPCS) Reference Manual - 95

Keyword Index
To see an alphabetical list of keywords for this document, consult the next section (page 98).

Keyword Description
------- -----------
entire This entire document.
title The name of this document.
scope Topics covered in this document.
availability Where these programs run.
who Who to contact for assistance.

introduction Role and goals of this document.

background LCRM origins and aims.

dpcs-architecture Structure, inventory of parts.
lcrm-architecture Structure, inventory of parts.
resource-allocation Resource-allocation LCRM parts.
rac Resource-allocation LCRM parts.

acc accounts
bac bank-names
bt bank-times (defunct)
ra shift-allocations (defunct)
newacct current-bank
defacct default-bank
racmgr manager-daemon

workload-scheduler Prod. workload scheduler parts.
pwsd Prod. workload scheduler parts.

pws-daemons Compares PWSD, PLSD, and BCD.
pwsd Compares PWSD, PLSD, and BCD.
plsd Compares PWSD, PLSD, and BCD.
bcd Compares PWSD, PLSD, and BCD.
pws-utilities Compares PWS user tools.
palter Compares PWS user tools.
pexp Compares PWS user tools.
phold Compares PWS user tools.
plim Compares PWS user tools.
prel Compares PWS user tools.
prm Compares PWS user tools.
psub Compares PWS user tools.

operating-features How LCRM behaves in practice.
status Explains allowed job STATUSes.

status-interpretation Ambiguities, warnings, PSTAT -m.
status-list Alphabetical status explanations.

class Explains allowed job CLASSes.
run-properties Alphabetical PSTAT run-report fields.
job-limits Bank and user resource partition limits.
environment-variables Explains LCRM en. var. roles.
comments Comment removal, shell implications.
shells Comment removal, shell implications.
job-scheduling How LCRM schedules jobs.

order Schedule-precluding conditions, in order.
algorithm Job scheduling algorithm.

output-truncation LCRM standard-output limits.

LCRM (DPCS) Reference Manual - 96

used-resources Reporting job memory and time used.
log-files LCRM system logs for debugging.
dfs How DFS, DCE interact with batch.
nonshareable-resources Managing nonshareable resources.
expedite-features Special PALTER features to expedite jobs.

expediting-jobs How to expedite jobs with PALTER, PEXP.
exempting-jobs How to exempt jobs with PALTER.
forcing-priorities How to force job priorities with PALTER.
lrmmgr-permissions Assigning PALTER permissions with LRMMGR.

phstat Production host status utility PHSTAT.

fair-share Fair-share job scheduling explained.
fair-share-definitions Share, active user terms defined.

shares Role, consequences, assignment of "shares."
active-users Role, criteria for "active users."

normalization Share normalization algorithm.
usage-decay Usage decay half-life algorithm.
priority Fair-share priority algorithm, results.
job-scheduling-1 Scheduling and fair-share priority.

priority-service Graceful priority-service startup.
warnings Ways to be warned about priority ser.
library-calls LIBPCS warning-support functions.

pcsgetresource Reports impending stop time.
lrmgetresource Reports impending stop time.
pcssig-register Requests signal if stop impending.
lrmsig-register Requests signal if stop impending.
pcswarn Enables a stop-warning variable.
lrmwarn Enables a stop-warning variable.
pcsstatus Error conditions in *pcsstatus.

warn-examples Sample uses of stop-warning tools.
poll-warning Code examples using PCSWARN.
signal-warning Code examples using PCSSIG_REGISTER.
admin-examples Examples using LRMMRG.

checkpointing Chkpt. instructions and examples.
checkpoint-overview Chkpt. alternatives compared.
condor-checkpoint Condor automatic chkpt. on Compaqs.
program-checkpoint Program-generated chkpt. tips.
checkpoint-script Script for restart after chkpt.
slurm-checkpoint SLURM/POE checkpointing steps.

index The structural index of keywords.
a The alphabetical index of keywords.
date The latest changes to this document.
revisions The complete revision history.

LCRM (DPCS) Reference Manual - 97

Alphabetical List of Keywords

Keyword Description
------- -----------

a The alphabetical index of keywords.
acc accounts
active-users Role, criteria for "active users."
admin-examples Examples using LRMMRG.
algorithm Job scheduling algorithm.
availability Where these programs run.
bac bank-names
background LCRM origins and aims.
bcd Compares PWSD, PLSD, and BCD.
bt bank-times (defunct)
checkpoint-overview Chkpt. alternatives compared.
checkpoint-script Script for restart after chkpt.
checkpointing Chkpt. instructions and examples.
class Explains allowed job CLASSes.
comments Comment removal, shell implications.
condor-checkpoint Condor automatic chkpt. on Compaqs.
date The latest changes to this document.
defacct default-bank
dfs How DFS, DCE interact with batch.
dpcs-architecture Structure, inventory of parts.
entire This entire document.
environment-variables Explains LCRM en. var. roles.
exempting-jobs How to exempt jobs with PALTER.
expedite-features Special PALTER features to expedite jobs.
expediting-jobs How to expedite jobs with PALTER, PEXP.
fair-share Fair-share job scheduling explained.
fair-share-definitions Share, active user terms defined.
forcing-priorities How to force job priorities with PALTER.
index The structural index of keywords.
introduction Role and goals of this document.
job-limits Bank and user resource partition limits.
job-scheduling How LCRM schedules jobs.
job-scheduling-1 Scheduling and fair-share priority.
lcrm-architecture Structure, inventory of parts.
library-calls LIBPCS warning-support functions.
log-files LCRM system logs for debugging.
lrmgetresource Reports impending stop time.
lrmmgr-permissions Assigning PALTER permissions with LRMMGR.
lrmsig-register Requests signal if stop impending.
lrmwarn Enables a stop-warning variable.
newacct current-bank
nonshareable-resources Managing nonshareable resources.
normalization Share normalization algorithm.
operating-features How LCRM behaves in practice.
order Schedule-precluding conditions, in order.
output-truncation LCRM standard-output limits.
palter Compares PWS user tools.
pcsgetresource Reports impending stop time.
pcssig-register Requests signal if stop impending.
pcsstatus Error conditions in *pcsstatus.
pcswarn Enables a stop-warning variable.

LCRM (DPCS) Reference Manual - 98

pexp Compares PWS user tools.
phold Compares PWS user tools.
phstat Production host status utility PHSTAT.
plim Compares PWS user tools.
plsd Compares PWSD, PLSD, and BCD.
poll-warning Code examples using PCSWARN.
prel Compares PWS user tools.
priority Fair-share priority algorithm, results.
priority-service Graceful priority-service startup.
prm Compares PWS user tools.
program-checkpoint Program-generated chkpt. tips.
psub Compares PWS user tools.
pwsd Prod. workload scheduler parts.
pws-daemons Compares PWSD, PLSD, and BCD.
pws-utilities Compares PWS user tools.
pwsd Compares PWSD, PLSD, and BCD.
ra shift-allocations (defunct)
rac Resource-allocation LCRM parts.
racmgr manager-daemon
resource-allocation Resource-allocation LCRM parts.
revisions The complete revision history.
run-properties Alphabetical PSTAT run-report fields.
scope Topics covered in this document.
shares Role, consequences, assignment of "shares."
shells Comment removal, shell implications.
signal-warning Code examples using PCSSIG_REGISTER.
slurm-checkpoint SLURM/POE checkpointing steps.
status Explains allowed job STATUSes.
status-interpretation Ambiguities, warnings, PSTAT -m.
status-list Alphabetical status explanations.
title The name of this document.
usage-decay Usage decay half-life algorithm.
used-resources Reporting job memory and time used.
warn-examples Sample uses of stop-warning tools.
warnings Ways to be warned about priority ser.
who Who to contact for assistance.
workload-scheduler Prod. workload scheduler parts.

LCRM (DPCS) Reference Manual - 99

Date and Revisions

Revision Keyword Description of
Date Affected Change
-------- -------- ------
24Jul07 status-interpretation
 Many LCRM limits not enforced by Moab.

status-list Moab-unenforced states noted.
job-limits Former limits not enforced by Moab.

22May07 warnings How LIBLRMEMU supports LIBLRM calls for Moab.
library-calls Moab's LIBLRMEMU role noted.
lrmsig-register

 Also supported by LIBLRMEMU for Moab.
lrmwarn Also supported by LIBLRMEMU for Moab.

12Mar07 introduction Moab as LCRM replacement noted.
pws-utilities Moab emulates some LCRM tools.
environment-variables

 How Moab/MSUB handles PSUB variables.
algorithm Moab preserves LCRM subpriorities.

28Aug06 introduction Tool and node access clarified.
operating-features

 White node section deleted, obsolete.
index Obsolete keywords deleted.

02Mar06 run-properties TIMECHARGED, USED redefined.
 Many more PSTAT -o alternatives.

environment-variables
 ENVIRONMENT role changed.
 Deprecated variables noted.
 LCRM_SERIESID explained.
 Checkpoint variables cross refed.
 Env Var manual re LCRM cited.

used-resources "Resources used" added to -f report.
usage-decay "Resources used" field explained.
slurm-checkpoint

 How to checkpoint on machines with
 both SLURM and POE (AIX), new section.

index New keyword for new section.
rac Batch/interactive banks merge.
status-list NODE>MAX, NODE<MIN added.

19Sep05 white-node-pools
 Section added on White node management.

index New keyword for new section.
algorithm Two disjoint SCF scheduling domains now.

24Aug05 resource-allocation
 Accounts eliminated, all account tools defunct.

pwsd New data protection measures.
run-properties CPUS replaces TASKS.

 POOL added, changes CONSTRAINT role.
environment-variables

 ENVIRONMENT role changed, PSUB_DEP_JOBID added.
used-resources CPUS new role noted.

LCRM (DPCS) Reference Manual - 100

log-files Details, search commands added.

29Mar05 background TBS replaces NQS, Oracle replaces Sybase.
lcrm-architecture

 New keyword to support new name.
newacct NEWACCT fails on BlueGene/L.
defacct DEFACCT misreports on BlueGene/L.
status-list DELAYED, BAT_WAIT, WHOST updated.

 WSUBH removed (obsolete).
job-limits More consistent implementation.
phstat New section on reporting tool.
warnings Sig reg call only from master node.
index Two new keywords added.
title LCRM dominates in title now.

 entire LCRM replaces DPCS throughout.

05Jan05 status-list PREEMPTD status deleted.
expediting-jobs

 Preemption deleted, never implemented.

19Jul04 rac LRMUSAGE replaces PCSUSAGE throughout.
plim Output details updated.
class Different role for -np.
usage-decay LRMUSAGE replaces PCSUSAGE.
warnings Signal reg now for SLURM, LoadLeveler.

05Feb04 warnings New names added for three functions.
warn-examples Two script examples replaced.
library-calls Three new keywords added.
index Three new keywords added.

10Nov03 index PCSMGR becomes LRMMGR everywhere, keyword changed.
status-list DELAYED, PREEMPTD added.
class X (expedited) class clarified.
run-properties Six properties added, clarified.
environment-variables

 SLURM env. vars. cross referenced.
order Added delay-before-scheduling details.
used-resources TIMECHARGED literal added.
expediting-jobs

 Preemption consequences explained.
title LCRM added to title.

26Aug03 introduction Cross ref to SLURM manual added.

20May03 introduction DPCS officially becomes LCRM.
background DPCS officially becomes LCRM.
algorithm Four new settable tech-priority attributes.
expedite-features

 New expeditor role formalized.

15Jan03 environment-variables
 PSUB_SUBDIR added, PSUB_WORKDIR revised.

13Jan03 expediting-jobs
 Now no job limit.

workload-scheduler
 Install mode, gateway node added.

status-list NOTIME, RES_WAIT, RUN_SBY, WHOST updated.
 RM_PEND, WSUBH added.

LCRM (DPCS) Reference Manual - 101

class P obsolete, S clarified.
algorithm Short production now obsolete.
dfs All DFS/DCE support ended.
nonshareable-resources

 All related DPCS features deactivated.

08Apr02 job-limits New section on partition limits.
status-list Three limit statuses added.

 Exemptable statuses noted.
class New standby (S) class added.
exempting-jobs Limit statuses exemptable too.
index New keyword for new section.

12Sep01 background New DPCS function diagram added.
algorithm Processor load, historical mem use

 now part of scheduling.
expediting-jobs

 PSUB now expedites jobs too.
exempting-jobs PSUB now exempts jobs too.
forcing-priorities

 PSUB now forces priorities too.
run-properties MAXPHYSS, MAXRSS fields added.
class Different rates for different classes OK.
pws-utilities PSUB, PLIM roles updated.
dfs DCE use clarified.

14Mar01 introduction Cross ref added re managing banks.
environment-variables

 Cross ref added re MPI, Pthreads vars.
dfs Cross ref added re new DFS restrictions.

10Jan01 status-list CPU&TIME status added.
pws-utilities job.limits file supplements PLIM.

20Dec00 priority Fair share formula changed, new terms.
expedite-features

 New sections on expediting, exempting,
 forcing priorities with PALTER.

environment-variables
 PCS_TMPDIR added, explained.

pws-utilities PALTER has new uses.
class Fourth (nonstop) class added.
algorithm Anticipated cost factor now settable.
index New keywords added.

23Oct00 dfs Need for -noDFS clarified.

19Jun00 status-list DEFERRED status added.
class How class error causes DEFERRED.
order DEFERRED status added.
dfs -noDFS toggle explained.

10May00 usage-decay PCSUSAGE replaces older tools.
rac PCSUSAGE replaces older tools.
normalization Relevant PSHARE line added.

03Mar00 nonshareable-resources
 Now works for SCF also.

status-list RES_WAIT now for SCF also.
dfs Passwordless use clarified.

LCRM (DPCS) Reference Manual - 102

 entire All CRAY features deleted.

14Jan00 nonshareable-resources
 New section on resource mgmt (OCF).

status-list RES_WAIT status added (OCF).
index New keyword added.

12Oct99 run-properties MAXCPUTIME, MAXRUNTIME added.
 EARLIEST_START, ECOMPTIME added.

status-list WCPU redefined, WPRIO added.
dfs New URL for DFS info.

09Jun99 priority Meiko (Tribble) partition deleted.

22Apr99 index New keyword added.
used-resources Updated, cross ref. added.
run-properties New PSTAT report section.

05Nov98 index New keyword added.
dfs New section on DFS interactions.
pcsgetresource MAXTIME now per task.

01Sep98 scope Fair-share, checkpoint notes added.
rac Fair-share role noted.
acc ACC largely disabled now.
bt BT defunct now.
ra RA defunct now.
newacct NEWACCT role limited now.
defacct DEFACCT role limited now.
status MULTIPLE status on SCF too.
status-list Status values now SCF and open.
log-files -T now covers 5 days of logs.
fair-share Fair-share now on SCF too.
priority-service

 Warnings now on SCF too.

21Apr98 warn-examples Detailed examples added.
checkpointing Checkpointing instructions added.

17Mar98 fair-share Major new section added.
used-resources Highwater PSTAT suboption added.
bt Now on SCF only.
index Eight new fair-share keywords.

19Feb98 who POP, DOCGUIDE refs. added.
introduction Bank manual cross ref. added.
rac Voluntary accounts clarified.

 Other usage utilities cited too.
acc Disabled (open) options noted.
status Now compares PSTAT -M and -m.
status-list Six new status values added.
used-resources New section on memory used.
log-files New section on DPCS logs.
warnings Warning status updated (open).
index Two new keywords added.

04Dec97 priority-service
 New section added on priority-
 service warning calls.

LCRM (DPCS) Reference Manual - 103

03Nov97 status-list New subsection for alpha. list.
status-interpretation

 New subsection, PSTAT -m stressed.

17Oct97 environment-variables
 Helpful use of PSUB_JOBID noted.

24Sep97 entire First edition of DPCS Ref. Manual.

TRG (24Jul07)

UCRL-WEB-201535
LLNL Privacy and Legal Notice (URL: http://www.llnl.gov/disclaimer.html)
TRG (24Jul07) Contact: lc-hotline@llnl.gov

LCRM (DPCS) Reference Manual - 104

http://www.llnl.gov/disclaimer.html

	Preface
	Introduction
	Background
	LCRM Architecture
	Resource Allocation and Control System (RAC)
	RACCOM (RAC Communications Daemon)
	ACC (Defunct)
	BAC (Report Bank Names and Privileges)
	BT (Defunct)
	RA (Defunct)
	NEWACCT (Defunct)
	DEFACCT (Defunct)
	RACMGR (RAC Manager Daemon)

	Production Workload Scheduler (PWS)
	The PWS Daemons (PWSD, PLSD, BCD)
	The PWS User Utilities

	LCRM Operating Features
	Status Values for Batch Jobs
	Interpreting Status Values
	Alphabetical List of Status Values

	Class Values for Batch Jobs
	Run Properties of Batch Jobs
	Resource Partition Limits
	Environment Variables for Batch Jobs
	Comment and Shell Handling
	Job Scheduling
	Order of Checking Precluding Conditions
	Algorithm for Job Scheduling

	Output Truncation
	Reporting Memory and Time Used
	Reviewing Log Files for Done Jobs
	DFS and DCE Interactions with Batch
	Managing Nonshareable Resources
	Expediting and Exempting Jobs
	Expediting Jobs
	Exempting Jobs
	Forcing Job Priorities
	Granting Special-Job Permissions

	PHSTAT (Production Host Status)

	Fair Share Scheduling Algorithms
	Definitions
	Shares
	Active Users

	Shares and their Normalization
	Usage and Its Decay
	Priority Calculation
	Role of Priority in Job Scheduling

	Graceful Priority-Service Transition
	Warning Alternatives
	Library Calls
	PCSGETRESOURCE (LRMGETRESOURCE)
	PCSSIG_REGISTER (LRMSIG_REGISTER)
	PCSWARN (LRMWARN)
	Error Conditions (*pcsstatus)

	Examples
	Poll-for-Warning Examples
	Signal-Catching Examples
	Administrative Examples

	Checkpointing
	Checkpointing Overview
	Condor Automatic Checkpoint
	Program-Generated Checkpoint
	An LCRM Resubmitting Script
	Checkpointing with SLURM and POE

	Disclaimer
	Keyword Index
	Alphabetical List of Keywords
	Date and Revisions

